12 August 2013 Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography
Author Affiliations +
J. of Micro/Nanolithography, MEMS, and MOEMS, 12(3), 031111 (2013). doi:10.1117/1.JMM.12.3.031111
Abstract
Going “beyond the CMOS information-processing era,” taking advantage of quantum effects occurring at sub-10-nm level, requires novel device concepts and associated fabrication technologies able to produce promising features at acceptable cost levels. Herein, the challenge affecting the lithographic technologies comprises the marriage of down-scaling the device-relevant feature size towards single-nanometer resolution with a simultaneous increase of the throughput capabilities. Mix-and-match lithographic strategies are one promising path to break through this trade-off. Proof-of-concept combining electron beam lithography (EBL) with the outstanding capabilities of closed-loop electric field current-controlled scanning probe nanolithography (SPL) is demonstrated. This combination, whereby also extreme ultraviolet lithography (EUVL) is possible instead of EBL, enables more: improved patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) beyond the state of the art, allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension levels with scanning probe microscopy-based pattern overlay alignment capability. Moreover, we are able to modify the EBL (EUVL) pattern even after the development step. The ultra-high resolution mix-and-match lithography experiments are performed on the molecular glass resist calixarene using a Gaussian e-beam lithography system operating at 10 keV and a home-developed SPL setup.
© 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Marcus Kaestner, Manuel Hofer, Ivo W. Rangelow, "Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS 12(3), 031111 (12 August 2013). http://dx.doi.org/10.1117/1.JMM.12.3.031111
JOURNAL ARTICLE
14 PAGES


SHARE
KEYWORDS
Scanning probe lithography

Electron beam lithography

Lithography

Optical lithography

Glasses

Extreme ultraviolet lithography

Nanolithography

Back to Top