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1 Introduction
Mask, process, and lithography-tool parameters are the most
important aspects for achieving high lithography performance.
Various methods have been proposed to optimize these
parameters in recent years. Optical proximity correction is
the main technology to optimize the mask pattern to enhance
the resolution.1 Source mask optimization (SMO) improves the
lithography performance by co-optimizing the illumination
source and mask.2 The optimized mask structure and source
shape via SMO suffers from extreme complexity, especially
for the pixelated mask and source,3–5 which leads to diffi-
culty in manufacturing. Furthermore, the parameters related
to the process, such as the film stacks, postexposure bake
(PEB), and photoresist development, have a strong impact
on the process window (PW).6,7 However, most published
optimization technologies were implemented under fixed
process conditions.3,8,9 Moreover, lithography-tool parame-
ters such as the numerical aperture (NA) and source param-
eter also determine the PW.1 Actually, the parameters related
to the mask, process, and lithography tool simultaneously
impact the lithography performance.10,11 The lithography
effects caused by multiple parameter errors could compen-
sate for each other,12 indicating that the co-optimization of
multiple parameters could improve the PW. However, no
effective methods have been published for co-optimizing
the mask, process, and lithography-tool parameters.

In this study, the first time to our knowledge, a co-opti-
mization method is developed to simultaneously optimize
the mask, process, and lithography-tool parameters. The PW
is extended by co-optimizing the parameters rather than opti-
mizing them independently. An effective co-optimization
flow is built to realize this goal. Conjugate gradient algo-
rithm is used to calculate the search direction in optimization.

The parameters are optimized along the search direction,
where a line search is applied within the parameters’ boun-
dary. Mask, process, and lithography-tool parameter co-
optimization (MPLCO) is a multidimensional optimization
method. As large-scale parameters are obstructed by small-
scale parameters during co-optimization, we also propose a
normalized conjugate gradient (NCG) algorithm to improve
the convergence efficiency of the MPLCO. In order to reduce
the complexity of the mask and source, a parametric mask
and source are used in the MPLCO. The mask pattern is opti-
mized by adding bias and changing the feature transmittance,
while the source shape is optimized by only adjusting
the sigma value in the MPLCO. As an example, we chose
eight parameters in the MPLCO to optimize 45-nm node pat-
terns. The MPLCO results show that the depth of focus
(DOF) of the line-space pattern is 93.75% larger than only
mask and source are optimized. At the same time, the com-
plexity of the mask and source has been reduced compared
with pixelated SMO in Ref. 3. In order to further improve the
PW of the SMO work in Ref. 3, we optimize the process
parameters of the SMO. The DOF of the SMO with opti-
mized process parameters is 13.54% larger than the SMO
for the line-space pattern but still smaller than that of
MPLCO. The co-optimization results demonstrate that the
large PW could be obtained only if the mask, process, and
lithography-tool parameters are optimized simultaneously.

The remainder of the paper is organized as follows. In
Sec. 2, the MPLCO is described in detail. The optimization
results are presented in Sec. 3. Finally, the conclusions are
summarized in Sec. 4.

2 Co-Optimization Method
The goal of MPLCO is to achieve high lithography perfor-
mance in a large PW. To realize this goal, we first create an
effective cost function to evaluate the lithography performance.
The cost function is sufficient in promoting the optimization*Address all correspondence to: Yanqiu Li, E-mail: liyanqiu@bit.edu.cn
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of the PW and benefits to the optimization procedure. Then,
the parameters are optimized along the search direction
iteratively until the largest PW is found.

2.1 Cost Function

The cost function is composed of the DOF, image contrast,
and normalized image log-slope (NILS). Usually, the PW is
measured under a designated metrology plane, where the
metrology plane is a slice through the aerial image or photo-
resist pattern to make the measurement. The overlap of
PW (common PW) through various metrology planes could
evaluate the overall lithography performance. A common
method for evaluating the overlap PW is to examine the
DOF with specific exposure latitude (EL), and a larger DOF
indicates better lithography performance.11,13 Thus, the DOF
is chosen as the main objective function in the optimization.
The DOF is a highly nonlinear function; it is usually been
trapped at a local minimum when using a gradient-based
algorithm.14,15 Some other objective functions should be
used to assist in optimizing the DOF. Because the image con-
trast and NILS are strongly related to the DOF14,16–18 and
converge much easier than DOF, they can serve as the assis-
tant objective function in promoting the optimization of the
DOF. Therefore, the cost function is formulated as a super-
position of the objective functions mentioned above by
assigning different weights.

F ¼ −
Xz

t¼1

ðw1 · jPt
Contrastj þ w2 · jPt

NILSjÞ

−
Xm
j¼1

εj · jPDOF@ELjj; (1)

where Pt
Contrast, P

t
NILS, and PDOF@ELi represent the value of

the aerial image contrast, the NILS, and the DOF with differ-
ent ELs, respectively; w1, w2, and εj are the corresponding
weights of the objective functions, respectively; j represents
the j’th EL value; t is the t’th metrology plane.

The cost function is beneficial to optimizing the PW,
while the image contrast and NILS are used to promote the
optimization of the DOF. Thus, the weight εj should be set
much larger than w1 and w2 in optimization.

PROLITH software is used to simulate the DOF, contrast,
and NILS owing to its superior ability in lithography simu-
lation, where the mask, process, and lithography-tool models
are accurately established.

2.2 Co-Optimization Flow

In this section, the parametric-based MPLCO is proposed
and realized by an NCG algorithm. First, all parameters in
the optimization are normalized in the same scale. Then, the
parameters are optimized along the search direction itera-
tively until the best combination of mask, process, and
lithography-tool parameters is found. Because the combina-
tion of mask, process, and lithography-tool parameters is
a multidimensional point in the optimization space, we use
point instead of combination and use xn to denote each
parameter in the following sections.

The co-optimization flow can be generalized in the
following steps, as shown in Fig. 1.

Step 1: Set the initial point and constraints of the
parameters.

The constraints contain the range of parameters,
the weight of the objective functions, the increment
of parameters for derivative calculation, and the ter-
mination conditions. The termination conditions can
be set as the number of iterations.

Step 2: Normalize the different scale parameters in the same
range of [0, 1].

The large-scale parameters are likely to be
obstructed by the small-scale parameters when opti-
mizing different scale parameters. Normalization is
carried out to eliminate the scale differences of the
lithography parameters and to improve the conver-
gence efficiency. The normalization is expressed as

x̄n ¼
xn − xmin

xmax − xmin

; (2)

where x̄n is the normalized parameter, xn is the non-
normalized original parameter, and xmax and xmin are
the maximum and minimum values of xn.

Step 3: Calculate the search direction at the initial or itera-
tion point.

A gradient-based algorithm is chosen to calculate
the search direction owing to its fast convergence
speed in solving lithography problems.4,19–22 At the
first iteration, the search direction is

dð0Þ ¼ −∇Fðfx̄ngð0ÞÞ; (3)

where fx̄ngð0Þ is the initial point, and dð0Þ is the first
search direction. For the k’th iteration, according to
Fletcher–Reeves conjugate gradient method, the
search direction is expressed as23

dðkÞ ¼ −∇Fðfx̄ngðkÞÞ þ
k∇Fðfx̄ngðkÞÞk22
k∇Fðfx̄ngðk−1ÞÞk22

· dðk−1Þ; ðk ≥ 1Þ; (4)

Fig. 1 Co-optimization flow. All the parameters are normalized into
the same scale in optimization and should be restitute to their original
scales for PROLITH simulation in step 3 and step 5.
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where k • k2 is the L2 norm, and fx̄ngðkÞ represents
the k’th iterative point.

As there are no explicitly analytical relations
between the cost function F and the point fxng,
the calculation of the derivative is intractable. We
use a numerical approximation of the gradient instead
of calculating the derivative of F. Hence, the approxi-
mate backward derivative is written as

∇Fðfx̄ngðkÞÞ ¼
Fðfx̄ngðkÞÞ − Fðfx̄ngðkÞ − fΔx̄ngÞ

fΔx̄ng
;

(5)

where Δx̄n is a small increment or variation between
the current iteration point and its neighborhood. For
each parameter x̄n, Δx̄n needs to be set before calcu-
lating ∇F. When xn is normalized to x̄n, Δx̄n and ∇F
are the normalized values.

Step 4: Calculate the local boundary along the search
direction.

We define two types of boundaries: the global
boundary and the local boundary. The global boun-
dary is the range of parameters set in step 1, while
the local boundary is the upper and lower limitations
along the search direction. The local boundary falls
within the range of the global boundary. The local
boundary calculation ensures that the co-optimization
of parameter is always within the valid search space.
For the two-parameter local boundary calculation in
Fig. 2, the points Aða1; a2Þ and Bðb1; b2Þ are the
global boundaries of the two parameters x1 and x2.
Uðu1; u2Þ and Vðv1; v2Þ are the local boundaries
along the direction dðd1; d2Þ from the k’th iterative
point Xðxk1; xk2Þ, which cannot exceed the range of
Aða1; a2Þ and Bðb1; b2Þ. The line search will be car-
ried out between point Xðxk1; xk2Þ and Uðu1; u2Þ.

The local upper boundary point U is calculated as
follows:

un ¼
�
xnþmin

�
ai−xi
di

�
· dn ði¼ 1;2; · · · ; t;dn ≠ 0Þ

an ðdn ¼ 0Þ
;

(6)

where un is the local upper boundary point along the
direction d, ai and bi are the global upper and lower

boundary values, and t is the dimension of the param-
eters. The function minf·g is used to calculate the
minimum common divisor of ðai − xiÞ∕di.

In Eq. (6), minfðai − xiÞ∕dig ensures that the
local boundary point value uk is always less than
or equal to the global boundary point value ak.
However, the calculation ofminfðai − xiÞ∕dig brings
an obstacle in optimizing different scale parameters
because the local boundary of the large-scale param-
eter is usually restricted by the small-scale parameter.
The local boundary of the large-scale parameter
always falls within a small range along the search
direction d, which makes it difficult to optimize
the large-scale parameter. For example, the scale
for the mask bias value is usually >20 nm, while
the scale for the illumination sigma value is 1. The
mask bias value is large-scale parameter compared
with the illumination sigma value. The local boun-
dary of mask bias is likely restricted by the illumina-
tion sigma value when the two parameters are
optimized together. However, there will be no differ-
ence in scales if the parameters are normalized to the
same range in step 2, and the large-scale parameter
will not be limited by the small-scale parameter.

Step 5: Apply a line search to find the optimal iteration
point along the search direction.

After the local boundary is calculated, a line
search is applied to find the optimum value in the seg-
ment between the iterative point X and the upper local
boundary U. The Hopfinger golden section search
method is used to apply the line search owing to
its ability in solving the problem in which the cost
function is not unimodal.24 We will not present the
details of line search method here; interested readers
may refer to Ref. 24 for more details.

Step 6: If the termination condition is satisfied, go to step 7.
Otherwise, go to step 3.

The MPLCO could find the best combination
of mask, process, and lithography-tool parameters
iteratively until the termination condition is satisfied.

Step 7: Output the optimized parameters of the mask, proc-
ess, and lithography tool and the corresponding cost
function F.

It is noted that a restitution operation (an inverse operation
of normalization) is necessary for the simulation of F when
calculating the search direction (step 3) and applying the line
search (step 5). All parameters need to be restituted to their
original scales for the PROLITH simulation of DOF, con-
trast, and NILS.

Without the parameter normalization step (step 2) and the
restitution operation, the optimization procedure can be
denoted as a conventional conjugate gradient (CCG) method.
The NCG method is developed on the basis of the CCG
method and is an improvement of the CCG method. The nor-
malizing operation could greatly improve the convergence
when optimizing different-scale parameters, and the advan-
tage is demonstrated in Sec. 3.2.

The MPLCO is a multidimensional optimization method;
thus, all parameters related to the mask, process, and
lithography tool could be optimized simultaneously. The
convergence robustness of the MPLCO is guaranteed in
three aspects. First, the cost function we built is easy to

Fig. 2 Illustration of the global boundary and local boundary.Aða1; a2Þ
and Bðb1; b2Þ are the global boundaries of the two parameters x1 and
x2, which have been set in step 1, while Uðu1; u2Þ and V ðv1; v2Þ are
the local boundaries along the search direction dðd1; d2Þ.
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converge. As the DOF is easily trapped at the local mini-
mum, we add the image contrast and NILS as assistant
objective function. Second, the normalization in MPLCO
guarantees the optimization of different scale parameters.
Third, the Hopfinger golden section search method used
in MPLCO is able to solve the nonunimodal cost function.

3 Co-Optimization Results

3.1 Simulation Conditions

Two typical geometries of a 45-nm node are used to demon-
strate the validity of the MPLCO: the semidense line-space
pattern and the dense contact hole. The duty ratios of these
patterns are 1:2 and 1:1. The critical dimension (CD) of the
line is 45 nm, while the CD of the contact hole is 60 nm.3 The
PROLITH programming interface helps to communicate
between the optimization algorithm and PROLITH.25 The
PROLITH simulation condition is same as that in Ref. 3
except that the parameters have been optimized. We use a
water (nwater ¼ 1.44) immersion lithography system with
the demagnification factor R ¼ 4. The source shape is annu-
lar with a fixed sigma width σwidth ¼ 0.15. The illumination
is Y-polarized for the line-space pattern and TE-polarized for
the contact hole.3 Since a tunable transmittance mask is
available, the feature transmittance could be varied over a
large range,26 and an attenuated phase-shift mask is used
to enhance the lithography capability. The well-calibrated
photoresist JSR ARX2895JN is used with a thickness of
120 nm for the line-space pattern and 102 nm for the contact
hole.3 Dual bottom antireflective coatings (BARCs) are
applied to reduce the substrate reflectivity and are optimized
under the initial parameter settings. The thicknesses of
BARCs are 33 and 43 nm for the line-space pattern and
24 and 43 nm for contact hole. The PW is constrained by
the tolerances of ΔCD ¼ �10%CD, an 80-deg sidewall
angle, and a 10% photoresist loss to maintain pattern
fidelity.27

It is necessary to use a robust photoresist model to opti-
mize the process parameters. In order to accurately simulate
the process conditions, a full physical photoresist model,
three-stage PEB model, and Mack development model are
used in PROLITH.25 The full physical photoresist model is
capable of simulating the reaction and diffusion of a chemi-
cally amplified photoresist accurately. The three-stage PEB
model describes the temperature variation when the wafer is
placed on a hotplate or chillplate and the wafer transition
time between the two plates.6 The three-stage temperature
profile is represented by nine parameters: the bake temper-
ature, the bake duration, and the temperature rise (or fall)
time for each stage. The initial temperature is 25°C. The tem-
peratures for the hotplate stage, transfer stage, and chillplate
stage are 110, 45, and 25°C, respectively. The rise (or fall)
times for these three stages are 5, 50, and 5 s, respectively.25

Eight parameters including the mask, process, and lithog-
raphy-tool parameters are selected as an example to demon-
strate the validity of the MPLCO. For the mask parameters,
the mask bias and feature transmittance are optimized. For
the process parameters, the hotplate duration, transition dura-
tion, chillplate duration, and photoresist development time
are chosen for the optimization. For the lithography-tool
parameters, the outer sigma σout of annular illumination
and the NA are selected for the optimization.

The DOF at EL ¼ 5% is chosen to evaluate the PW,
where EL ¼ 5% is a common value for 45-nm lithography
and is closer to the actual case.10 The goal of co-optimization
is to extend the DOF at EL ¼ 5% to be as large as possible.
The DOF at EL ¼ 3% is another objective function in the
optimization. The weights for PContrast, PNILS, PDOF@EL¼5%,
and PDOF@EL¼3% in F are w1 ¼ 0.2, w2 ¼ 0.1, ε1 ¼ 10, and
ε2 ¼ 2, respectively. Only one metrology plane is set for
each pattern, and the metrology plane could cover a whole
pitch. The PWs measured at the metrology planes are the
overlap PWs for these two infinite and periodic patterns. The
metrology plane for the line space is a cutline perpendicular
to the line direction, while for the contact hole the cutline is
set at the center of the hole. The optimization terminates after
20 iterations of the line search.

The unoptimized parameters for the line space and contact
hole are set as the initial point fxgð0Þ. The ranges of the
parameters are set in a reasonable range, which ensures that
the values of the parameters are realizable in lithography. The
conditions for the initial value fxgð0Þ, the minimum value
(lower global boundary), the maximum value (upper global
boundary), and the increment of the parameters fΔxg are
listed in Table 1. Owing to the different properties of
these parameters, different increments Δxn and Δx̄n are set
to calculate the gradient for the CCG and NCG methods. It is
noted thatΔxn is the actual value of the parameter, whileΔx̄n
is the normalized value.

3.2 Co-Optimization Results

The results are demonstrated in two aspects. We first present
the improvement in the PW by using the MPLCO method.
The convergence efficiency of the MPLCO by using the
CCG (MPLCO-CCG) method and the proposed NCG
(MPLCO-NCG) method are also compared. Then, the mask
and source complexities are compared between the MPLCO
method and the pixelated SMO in Ref. 3.

The optimized parameters of the MPLCO-CCG and
MPLCO-NCG methods are listed in the last two columns
in Table 1. The MPLCO-CCG results show no changes for
the mask bias, PEB duration, and develop time, although the
small-scale parameters are well optimized. This is mainly due
to the drawback of the local boundary calculation when opti-
mizing the different scale parameters. The optimization of the
large-scale parameters is limited by small-scale parameters in
the optimization procedure. However, when all the parameters
are normalized to the same scale in theMPLCO-NCGmethod,
the optimization can move further. The normalized method
could improve the convergence efficiency of the optimization.
Figure 3 illustrates the convergence curve of theMPLCO-CCG
and MPLCO-NCG methods, which show that the MPLCO-
NCG method could effectively reduce the cost function.

The MPLCO-NCG method greatly decreases the hotplate
and chillplate duration but increases the development time.
The PEB mainly affects the reaction of chemically amplified
photoresist, which thereby impacts the profile of the photo-
resist. The entire PEB durations are 29.96 and 99.67 s for the
line-space pattern and contact hole, which are shorter than
the initial setting of 100 s. The development time affects
the CD of the photoresist, which has been optimized to
60 and 24.37 s for the line-space pattern and contact hole.
The optimized process parameters ensure the exact chemical
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reaction of the photoresist with an acceptable profile in
a large PW.

The EL versus DOF curves for the line-space pattern and
contact hole are illustrated in Fig. 4. The curves denoted with
triangles and stars represent the PWof the MPLCO-CCG and

MPLCO-NCGmethods, respectively. We use the dashed line
to indicate the DOF at EL ¼ 5% in the figure. The DOF at
EL ¼ 5% of the MPLCO-CCG and MPLCO-NCG methods
are 0.349 and 0.558 μm for the line-space pattern, respec-
tively, and 0.344 and 0.356 μm for the contact hole,

Table 1 Co-optimization conditions and results.

Pattern Parameters

Conditions Optimized results

Initial Min. Max. CCG increment NCG increment MPLCO-CCG MPLCO-NCG

Line space Mask bias (nm) 10 0 40 5 0.1 10 39.98

Feature transmittance 0.06 0.03 0.3 0.01 0.1 0.167 0.108

Hotplate duration (s) 60 10 100 5 0.1 60 10.03

Transition duration (s) 10 2 20 2 0.1 10 6.93

Chillplate duration (s) 30 10 60 5 0.1 30 13

Development time (s) 30 5 60 2 0.1 30 60

σout 0.78 0.65 0.99 0.02 0.1 0.86 0.84

NA 1.2 1 1.35 0.02 0.1 1 1

Contact hole Mask bias (nm) 10 0 30 5 0.05 10 16.31

Feature transmittance 0.06 0.03 0.3 0.02 0.05 0.06 0.17

Hotplate duration (s) 60 10 100 5 0.05 60 59.8

Transition duration (s) 10 2 20 2 0.05 10 9.96

Chillplate duration (s) 30 10 60 5 0.05 30 29.91

Development time (s) 12 5 60 2 0.05 12 24.37

σout 0.86 0.65 0.99 0.05 0.05 0.92 0.92

NA 1.2 1 1.35 0.05 0.05 1 1

Note: CCG, conventional conjugate gradient, NCG, normalized conjugate gradient, MPLCO, mask, process, and lithography-tool parameter
co-optimization.

Fig. 3 Convergence curves of the mask, process, and lithography-
tool parameter co-optimization–conventional conjugate gradient
(MPLCO-CCG) and MPLCO–normalized conjugate gradient (NCG)
methods for the (a) line space and (b) contact hole. The cost function
could be effectively reduced after the parameters have been normal-
ized when using the MPLCO-NCG method.

Fig. 4 Exposure latitude (EL) versus depth of focus (DOF) compari-
son for the (a) line space and (b) contact hole. The process window
(PW) is greatly extended when the mask, process, and lithography-
tool parameters are well optimized simultaneously by using the
MPLCO-NCG method. The PW of source mask optimization (SMO)
with optimized process condition is larger than that of SMO, but
smaller than MPLCO-NCG.
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respectively. The PW is greatly extended after co-optimiza-
tion, especially when the mask, process, and lithography-tool
parameters are well optimized by using the MPLCO-NCG
method. The DOF at EL ¼ 5% of the MPLCO-NCG method
increases by 59.89 and 3.49% for the line-space pattern and
contact hole compared with the MPLCO-CCG method. The
reason is mainly because the large-scale parameters are not
being optimized when using the MPLCO-CCG. The com-
parison between MPLCO-CCG and MPLCO-NCG indicates
that the more parameters have been well optimized, the
larger PW can be obtained. As an SMO work is done to
extending the PW in Ref. 3, the EL versus DOF curve of
the SMO denoted with square is represented in Fig. 4. The
DOF at EL ¼ 5% of the SMO is 0.288 μm for line-space
pattern and 0.172 μm for contact hole, which are much
smaller than the DOF of MPLCO-NCG. The comparison
between the MPLCO and SMO could also prove that large
PW can be obtained when more parameters are involved in
optimization.

In order to demonstrate the merits of MPLCO and the
impact of the process parameters on lithography, we only
optimize the process parameters under the condition that
the mask and source are optimized by the SMO in Ref. 3.
The increments of NCG method are Δx̄n ¼ 0.01 for the
line-space pattern and Δx̄n ¼ 0.1 for the contact hole.

The parameter settings and optimized results are listed in
Table 2. The EL versus DOF curves are shown in Fig. 4.
The DOF at EL ¼ 5% of the SMO with process optimization
(PO) are 0.327 μm for the line-space pattern and 0.178 μm
for the contact hole, which are 13.54 and 3.49% larger than
that of SMO. This verifies that the PW could be extended by
optimizing the process parameters. From Fig. 4, we also find
that the DOF at EL ¼ 5% for the MPLCO-NCG method is
still larger than that of SMO with PO. Although the maxi-
mum EL of the MPLCO-NCG method is smaller than that of
SMO and SMO with PO, the DOF at EL ¼ 5% of the
MPLCO-NCG method definitely increases. The results
indicate that a large PW could be obtained only if the
mask, process, and lithography-tool parameters are opti-
mized simultaneously.

The second advantage of the proposed MPLCOmethod is
to reduce the mask and source complexity. A parametric
mask and source are used in the MPLCO. For comparison,
Fig. 5 shows the mask pattern and source shape of the SMO,
MPLCO-CCG method, and MPLCO-NCG method. For the
contact hole of the SMO, the mask pattern is much more
complex compared with the MPLCO-CCG and MPLCO-
NCG results. A complex mask is difficult to manufacture
and will greatly increase the cost of mask fabrication. For
the parametric mask, the mask pattern has only been biased
rather than applying complex mask correction, which could
reduce the complexity of the mask. The source shapes of
the SMO results suffer from an intricate distribution with
a nonuniform intensity. It is necessary to use a customized
diffractive optical element or an expensive programmable
illuminator to generate the pixelated source. However, one
just needs to adjust the sigma value for the parametric source
in which the source shape always has high uniformity and
stability.

The mask error enhancement factor (MEEF) is compared.
The MEEF of the SMO result, MPLCO-CCG result, and
MPLCO-NCG result are 5.45, 4.74, and 4.47 for the line-
space pattern, respectively, and 12.69, 15, and 15.39 for the
contact hole, respectively. There are nearly no improvements
for the MEEF when using MPLCO compared with SMO.
The MEEF of MPLCO result is smaller than SMO result
for line-space pattern, but larger than SMO result for contact
hole. Contact hole suffers the largest MEEFs of any feature
type because the change in mask size of a regular contact
hole will lead to change in exposure dose.27 There are more
clear areas at the corner of contact hole optimized by SMO;
the change of mask size will lead to less change in exposure
dose compared with the regular contact hole optimized by
MPLCO. Therefore, the MEEF of regular contact hole opti-
mized by MPLCO is larger than the contact hole optimized
by SMO.

4 Conclusion and Discussion
This paper proposes an MPLCO method that can optimize
the mask, process, and lithography-tool parameters simulta-
neously. An NCG algorithm is used in the MPLCO to
improve the convergence efficiency and is successfully
applied to optimize different scale parameters. As the process
parameters have strong impact on lithography performance,
it is necessary to use a full physical photoresist model to sim-
ulate the process behavior accurately when optimizing the
process parameters. The PW of the SMO with optimized

Table 2 Co-optimization of the process parameters for source mask
optimization.

Parameters

Conditions Optimized results

Initial Min. Max. Line space Contact hole

Hotplate duration (s) 60 10 100 23.01 59.92

Transition duration (s) 10 2 20 8.43 9.99

Chillplate duration (s) 30 10 60 12.62 29.98

Development time (s) 12 5 60 34.23 6.72

Fig. 5 Comparison of the optimized mask pattern and source shape
among the SMO, MPLCO-CCG, and MPLCO-NCG results. The para-
metric mask and source optimized by MPLCO-CCG and MPLCO-
NCG suffers less complexity compared with pixelate SMO.
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process is larger than the SMO, but still smaller than that of
MPLCO. The results indicate that the more parameters have
been optimized simultaneously, the larger PW could be
obtained.

In addition, the complexity of the mask and source could
be greatly reduced by using the MPLCO compared with the
SMO. The mask pattern has only been biased rather than
applying complex mask correction, while the source shape
is controlled by adjusting the sigma value. The assumption
and simplification for the mask is sufficient when optimizing
the one-dimensional line-space pattern and two-dimensional
contact hole. The cost of fabrication could be greatly reduced
by using the parametric mask and source. In our future work,
we will model the complex two-dimensional mask pattern in
parametric form and apply the MPLCO to it.

Acknowledgments
We gratefully acknowledge the financial support from
the National Science and Technology Major Project, Key
Program of National Natural Science Foundation of China
under Grant No. 60938003, and National Natural Science
Foundation of China under Grant No. 61204113. This
work is also supported by the Key Laboratory of Photoelec-
tronic Imaging Technology and System, Beijing Institute of
Technology, Ministry of Education of China, under Grant
No. 2013OEIOF05. We thank KLA-Tencor Corporation
for providing academic use of PROLITH.

References

1. A. K. Wong, Resolution Enhancement Techniques in Optical
Lithography, SPIE, Bellingham, WA (2001).

2. X. Ma and G. R. Arce, Computational Lithography, 1st ed., John Wiley
and Sons, New York (2010).

3. X. Ma et al., “Hybrid source mask optimization for robust immersion
lithography,” Appl. Opt. 52(18), 4200–4211 (2013).

4. J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask
optimization,” Opt. Express 20(19), 21792–21804 (2012).

5. X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask
optimization for resolution enhancement in optical lithography,” Opt.
Express 17(7), 5783–5793 (2009).

6. M. D. Smith, C. Mack, and J. S. Pertersen, “Modeling the impact of
thermal history during post exposure bake on the lithographic perfor-
mance of chemically amplified resists,” Proc. SPIE 4345, 1013–1021
(2001).

7. B. M. Rathsack et al., “Optical lithography simulation and photoresist
optimization for photomask fabrication,” Proc. SPIE 3678, 1215–1226
(1999).

8. Y. Shen et al., “Robust level-set-based inverse lithography,” Opt.
Express 19(6), 5511–5521 (2011).

9. P. Yu, S. X. Shi, and D. Z. Pan, “True process variation aware optical
proximity correction with variational lithography modeling and model
calibration,” J. Micro/Nanolith. MEMS MOEMS 6(3), 031004 (2007).

10. A. V. Pret et al., “Combined mask and illumination scheme optimization
for robust contact patterning on 45 nm technology node flash memory
devices,” Proc. SPIE 6924, 69243B (2008).

11. J. V. Wingerden et al., “Lithographic process optimization using process
capability analysis,” Proc. SPIE 5040, 882–893 (2003).

12. Y. Li et al., “The cross talk of multi-errors impact on lithography per-
formance and the method of its control,” Proc. SPIE 8418, 841802
(2012).

13. N. Jia and E. Y. Lam, “Pixelated source mask optimization for process
robustness in optical lithography,” Opt. Express 19(20), 19384–19398
(2011).

14. Y. Granik, “Source optimization for image fidelity and throughput,”
J. Microlithogr., Microfabr., Microsyst. 3(4), 509–522 (2004).

15. A. E. Rosenbluth and N. Seong, “Global optimization of the illumina-
tion distribution to maximize integrated process window,” Proc. SPIE
6154, 61540H (2006).

16. J. A. Torres, Y. Granik, and F. Schellenberg, “Contrast analysis and
optimization for resolution enhancement technique,” J. Microlithogr.,
Microfabr., Microsyst. 2(2), 119–128 (2003).

17. J. Yu and P. Yu, “Impacts of cost functions on inverse lithography
patterning,” Opt. Express 18(22), 23331–23342 (2010).

18. M. C. Smayling and V. Axelrad, “32 nm and below logic patterning
using optimized illumination and double patterning,” Proc. SPIE
7274, 72740K (2009).

19. J. Yu, P. Yu, and H. Chao, “Fast source optimization involving quadratic
line-contour objectives for the resist image,” Opt. Express 20(7), 8161–
8174 (2012).

20. A. Poonawala and P. Milanfar, “Mask design for optical microlithog-
raphy—an inverse imaging problem,” IEEE Trans. Image Process.
16(3), 774–788 (2007).

21. Y. Granik, “Fast pixel-based mask optimization for inverse lithography,”
J. Microlithogr., Microfabr., Microsyst. 5(4), 043002 (2006).

22. Y. Peng et al., “Gradient-based source and mask optimization in optical
lithography,” IEEE Trans. Image Process. 20(10), 2856–2864 (2011).

23. A. Ravindran, K. M. Ragsdell, and G. V. Reklaitis, Engineering
Optimization Methods and Applications, John Wiley and Sons, New
Jersey (2006).

24. E. Hopfinger, “On the solution of the unidimensional local minimiza-
tion problem,” J. Optim. Theory Appl. 18(3), 425–428 (1976).

25. KLA-Tencor Corporation, “PROLITH Manual,” http://www.K-T.com/
current-software-solutions/computational-lithography.html.

26. B. S. Kasprowicz et al., “Tunable transmission phase mask options for
65∕45 nm node gate and contact processing,” Proc. SPIE 5754, 1469–
1477 (2005).

27. C. Mack, Fundamental Principles of Optical Lithography: The Science
of Microfabrication, John Wiley and Sons, New York (2007).

Xuejia Guo received his BS degree in optical information science and
technology from University of Jinan in 2008. He is currently a PhD
candidate directed by Professor Yanqiu Li in the School of Optoelec-
tronics at Beijing Institute of Technology. His current interests involve
lithography simulation and optimization.

Yanqiu Li received her MS and PhD degrees in optics from Harbin
Institute of Technology of China. She is currently a professor of
School of Optoelectronics at Beijing Institute of Technology, Beijing,
China. She holds over 30 Chinese patents and has published numer-
ous articles on lithographic science.

Lisong Dong received his BS degree in applied physics from Hefei
University of Technology, China, in 2008. He is currently a PhD
candidate directed by Professor Yanqiu Li at Beijing Institute of
Technology, Beijing, China. His research interests include lithography
simulation and resolution enhancement technology.

Lihui Liu received his BS and MS degrees in optics from Hebei
University, respectively, in 1999 and 2002. He received his PhD
from Institute of Modern Optics in NanKai University in 2005. He is
currently an associate professor of School of Optoelectronics at
Beijing Institute of Technology, Beijing, China. His research is focused
on optical sensing, lithography simulation, and optimization.

J. Micro/Nanolith. MEMS MOEMS 013015-7 Jan–Mar 2014 • Vol. 13(1)

Guo et al.: Co-optimization of the mask, process, and lithography-tool parameters to extend the process window

http://dx.doi.org/10.1364/AO.52.004200
http://dx.doi.org/10.1364/OE.20.021792
http://dx.doi.org/10.1364/OE.17.005783
http://dx.doi.org/10.1364/OE.17.005783
http://dx.doi.org/10.1117/12.436826
http://dx.doi.org/10.1117/12.350173
http://dx.doi.org/10.1364/OE.19.005511
http://dx.doi.org/10.1364/OE.19.005511
http://dx.doi.org/10.1117/1.2752814
http://dx.doi.org/10.1117/12.772676
http://dx.doi.org/10.1117/12.485520
http://dx.doi.org/10.1117/12.978295
http://dx.doi.org/10.1364/OE.19.019384
http://dx.doi.org/10.1117/1.1794708
http://dx.doi.org/10.1117/12.656950
http://dx.doi.org/10.1117/1.1562931
http://dx.doi.org/10.1117/1.1562931
http://dx.doi.org/10.1364/OE.18.023331
http://dx.doi.org/10.1117/12.814258
http://dx.doi.org/10.1364/OE.20.008161
http://dx.doi.org/10.1109/TIP.2006.891332
http://dx.doi.org/10.1117/1.2399537
http://dx.doi.org/10.1109/TIP.2011.2131668
http://dx.doi.org/10.1007/BF00933821
http://www.K-T.com/current-software-solutions/computational-lithography.html
http://www.K-T.com/current-software-solutions/computational-lithography.html
http://www.K-T.com/current-software-solutions/computational-lithography.html
http://www.K-T.com/current-software-solutions/computational-lithography.html
http://www.K-T.com/current-software-solutions/computational-lithography.html
http://dx.doi.org/10.1117/12.601011

