7 April 2016 Enhanced optical characteristics of terahertz bandpass filters based on plasmonic nanoparticles
Author Affiliations +
J. of Nanophotonics, 10(2), 026002 (2016). doi:10.1117/1.JNP.10.026002
Plasmonic nanostructures enable considerable control and manipulation of light at the subwavelength scale and are promising for demonstration of optical metamaterials with enhanced spectral response. In this paper, we introduce a generation of terahertz bandpass filters that exploit the characteristics of subwavelength plasmonic nanoparticles. The design procedure is discussed based on a well-known complementary split ring resonator with a resonant feature at the THz region (∼1.5  THz), and it has been shown that device design based on plasmonic nanoparticles can conquer the poor off-resonance selectivity limit of common THz filters and exhibit higher transmission response, faster roll-off, and almost ripple-free operation. A much larger coupling capacitance for nanoparticles in the touching condition can modify the resonance wavelength, and localized hot spots enhance the device sensitivity for special applications. The effect of plasmonic nanoparticle size on the filtering characteristics is also discussed. A simple fabrication procedure based on discontinuous islandized surface morphology of thin metallic films on a dielectric has been proposed for demonstration of the THz filters introduced here.
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
Sajjad Yadollahzadeh, Hamed Baghban, "Enhanced optical characteristics of terahertz bandpass filters based on plasmonic nanoparticles," Journal of Nanophotonics 10(2), 026002 (7 April 2016). https://doi.org/10.1117/1.JNP.10.026002

Back to Top