15 December 2017 Enhancement of the solar cell based on nanophotonic crystals
Author Affiliations +
Abstract
Here, we have successfully designed a photonic crystal structure to improve the light absorption by increasing the optical path length of the incident light inside the absorbing material to enhance the efficiency of a thin film silicon solar cell. The current design is based on the high temperature superconducting-dielectric photonic crystals (HTcSD PCs). We have substituted the indium tin oxide as a front contact and antireflection coating in the conventional cell by HTcScD PCs. Also, we have substituted the back contact and the back reflector of the conventional cell construction by HTcScD PCs. The aim of these substitutions is to reduce the power dissipation in a thin film silicon solar cell. Numerical results of the proposed structure are obtained based on the transfer matrix method, the finite element method, and COMSOL Multiphysics software. The HTcScD PCs reduced the power dissipation in the thin film silicon solar cell due to the increase of the optical generation term of electron–hole pairs. Finally, using high temperature superconducting photonic crystals in photovoltaic applications is promising and may be of potential use in the future.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Arafa H. Aly, Arafa H. Aly, Hassan Sayed, Hassan Sayed, } "Enhancement of the solar cell based on nanophotonic crystals," Journal of Nanophotonics 11(4), 046020 (15 December 2017). https://doi.org/10.1117/1.JNP.11.046020 . Submission: Received: 25 July 2017; Accepted: 14 November 2017
Received: 25 July 2017; Accepted: 14 November 2017; Published: 15 December 2017
JOURNAL ARTICLE
9 PAGES


SHARE
Back to Top