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approach can be applied to arbitrary periodic refractive index profiles using the Fourier series
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1 Introduction

Electromagnetic metamaterials (MM) are artificial composites with electromagnetic properties
not readily found in nature. A special class of MMs is the negative refractive index metamaterials
(NRM), artificial structures with negative phase velocity.1 A number of practical implementa-
tions of optical MM have been reported.2,3

NRM are typically produced using arrays of subwavelength “particles” with negative effec-
tive relative permittivity and permeability as their structural units. The first proposed NRM par-
ticles were split-ring resonators and nanowires, furnishing negative permeability and permittivity
of their composites.3 They are well understood and extensively used in the microwave domain.
However, other particles such as complementary split-ring resonators,4 cut-wire pairs/plate
pairs,5 and double fishnets6–8 are also investigated. The first NRM were experimentally con-
firmed in 2001,9 and recently the experimental fishnet-type NRM in the visible range of frequen-
cies have been fabricated and investigated.10

The properties of NRM, such as the negative index of refraction (and negative phase veloc-
ity), inverse Doppler effect, radiation tension instead of pressure, etc.11,12 resulted in a number of
proposed applications. Among those we mention superlenses and hyperlenses that enable im-
aging far below the diffraction limit,13,14 resonant cavities, and waveguides with geometrical
dimension orders of magnitude smaller than the operating wavelength15 as well as invisibility
cloaks and generally transformation optics.16
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Most studies consider structures with constant effective permittivity and permeability within
the NRM part and abrupt interfaces with the surrounding regular materials [positive refractive
index media (PRM)]. However, there is both theoretical and practical interest in NRM with spa-
tially varying effective permittivity and permeability within the NRM structure and with gradual
transition from the PRM to NRM and vice versa. Graded refractive index is interesting for trans-
formation optics including hyperlenses17 and invisibility cloaks.18 Various other proposed appli-
cations of gradient refractive index (GRIN) metamaterials include beam shaping and directing,
enhancement of nonlinear effects,19 superlenses,20 etc.

The first paper dedicated to GRIN NRM was published in 2005.21 Analytical approaches to
graded index metamaterial structures are of special interest, since they ensure fast, simple, and
direct route to the determination of the field distribution and the calculation of the scattering
parameters within such materials.22–28

The present study is a generalization of our previous work27,28 in a sense that it allows differ-
ent loss factors in PRM and NRM segments. An assumption of uniform loss factors throughout
the structure has been made in Refs. 27–29. The possibility of choosing arbitrary loss factors in
PRM and NRM, independent of each other, is essential for a realistic description of composites
involving NRM as building blocks, since it is empirically well known that the losses in the NRM
part are significantly higher than those in the PRM. Thus, in this paper, we present an exact
analytical solution of Helmholtz equations for the propagation of electromagnetic waves through
a periodic gradient-index PRM–NRM composite with most general loss factors in the two mate-
rials and with sinusoidal periodicity for the case of constant impedance throughout the structure.
A comparison of the obtained analytical solution to the results of numerical simulation using a
Z-transform based model is given.

2 Problem Formulation

The geometry of the present problem is shown in Fig. 1. The electric field points to the y-
direction and has the form ~Eð~rÞ ¼ EðxÞ~ey, while the magnetic field points to the z-direction
and has the form Hð~rÞ ¼ HðxÞ~ez. The wave propagates along the x-axis. The spatial variation
of the refractive index along the x-axis is described by a cosine function. An implementation of a
GRIN metamaterial obtained following an approach similar to that found in Ref. 29 is shown in
Fig. 2. For this purpose, a two-dimensional array of single split rings is deposited onto a dielec-
tric substrate. The example is given for illustration purposes only, as the structures with varying
dimensions may be any of metamaterial unit structures or “particles” (“atoms”). Also, periodicity
does not have to be sinusoidal (and actually may be represented by any graded structure, as long
as a Fourier series representation is valid) and the gradient itself may be along one, two, or all
three axes.

The NRM structures are of importance for transformation optics,30 the most well-known
example being the invisibility cloaks. For instance, optical carpet cloaks31 were reported
with effective index gradient obtained by drilling hole arrays with varying geometry.32 Other
important applications include optical and generally electromagnetic concentrators based on

Fig. 1 Propagation of a wave through a graded index structure with a cosine profile: a zeroth-order
component of a Fourier series expansion for an arbitrary spatial dispersion.
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metamaterials, beam shapers, and beam steering devices, as well as different kinds of metama-
terial lenses including the hyperlenses17 for the transformation of near field into the far field.
Finally, an important application is gradient index circuitry utilizing metamaterial waveguides.33

We write the Helmholtz equations for EðxÞ and HðxÞ28

d2E
dx2

−
1

μ

dμ

dx
dE
dx

þ ω2μεEðxÞ ¼ 0;
d2H
dx2

−
1

ε

dε

dx
dH
dx

þ ω2μεHðxÞ ¼ 0; (1)

where ε ¼ εðω; xÞ and μ ¼ μðω; xÞ are the frequency-dependent dielectric permittivity and mag-
netic permeability, respectively. The spatial dependency of the functions εðxÞ and μðxÞ may be
completely arbitrary. The only limit of applicability of the present approach, in terms of radiation
wavelength versus the structural period of the metamaterial, is posed by the requirement that the
effective medium approximation remains valid, i.e., that the structure periodicity is much smaller
than the operating wavelength.

3 Analytical Solutions of the Field Equations

Let us now consider an infinite and inhomogeneous periodic structure, where the real parts of the
effective dielectric permittivity and magnetic permeability vary as a cosine function from pos-
itive values (right-handed material) to negative ones (left-handed material) and back again. The
thickness a of the positive part is equal to that of the negative part. For the sake of simplicity, we
assume an impedance-matched case where real parts of effective permittivities and permeabil-
ities of the two materials at a given frequency have opposite signs and equal absolute values.
Thus, to determine their values, we use the functions

μðω; xÞ ¼ μ0μRðωÞ cos
�
πx
a

�
− iμ0

�
μIR þ μIL

2
þ μIR − μIL

2
cos

�
πx
a

��
; (2)

εðω; xÞ ¼ ε0εRðωÞ cos
�
πx
a

�
− iε0

�
εIR þ εIL

2
þ εIR − εIL

2
cos

�
πx
a

��
; (3)

where �εRðωÞ and �μRðωÞ are the frequency-dependent real parts of the effective permittivities
and permeabilities in the two materials, respectively, where the plus sign applies to PRM and
minus sign to NRM. Furthermore, εIRðωÞ and εILðωÞ are the imaginary parts of the effective
permittivities of PRM and NRM, respectively, whereas μIRðωÞ and μILðωÞ are the imaginary
parts of the effective permeabilities of PRM and NRM, respectively. For a material to be passive,
i.e., without gain, and to satisfy causality, the conditions must be satisfied that the imaginary
parts of both the permittivity and permeability are positive. It should be noted here that, so far,

Fig. 2 An example of practical implementation of a metamaterial with sinusoidal profile along the
x -axis: a two-dimensional array of circular single split ring structures forming a graded metama-
terial media. The substrate is dielectric and the spatial dispersion is obtained by varying the split
ring dimensions and spacing.
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the imaginary parts of the permittivity [εIRðωÞ and εILðωÞ] and permeability [μIRðωÞ and μILðωÞ]
in PRM and NRMmedia, respectively, are not related to each other in any way and can be chosen
arbitrarily except for the causality requirement.

According to the Kramers-Kronig (KK) relations that are fully valid for metamaterials34,35

(i.e., due to causality), the real and the imaginary parts of such complex media are related, but it
is an integral interdependence which by no means stipulates that they have to follow the same
trends in the relatively narrow range of frequencies typically observed in metamaterials. On the
contrary, in a more general case, these parts of the dependencies can assume very different forms,
up to the point of assuring a possibility to compensate unavoidable losses in the negative refrac-
tive index part through the introduction of active media,36 where KK relations still remain valid.

The apparent interdependence between the parameters of the two media is due to the math-
ematical properties of the transition function model, sinusoidal in this case. However, further
away from the transition region, the imaginary parts of the permittivity [εIRðωÞ and εILðωÞ]
and permeability [μIRðωÞ and μILðωÞ] in PRM and NRM media, respectively, can be chosen
independently from each other. The reason for giving Eqs. (2) and (3) is just a need to formulate
a simple mathematical model of gradual transition between NRM and PRM. In a more elaborate
model, which will be the subject of our future work, this distinction between the two materials
will become more manifest.

Unlike some other functional dependences of PRM–NRM transitions studied so far, for in-
stance tan hðxÞ model,24 the sinusoidal model provides only for relatively slow transitions and it
is not equally obvious where we are “far away from the transition region.” In continuous models,
the freedom of choice of parameters e.g., the permittivity εIRðωÞ and εILðωÞ as well as permeabil-
ity μIRðωÞ and μILðωÞ in PRM and NRM media, respectively, is an asymptotic statement. For
example, tan hð∞Þ → 1 is only an asymptotic constant. The fact is that in a continuous model
there is everywhere a spatial dependency and interdependency of material parameters. But at
some asymptotic points, we calibrate the spatially constant and frequency-dependent material
parameters to correspond to the actual PRM and NRMmedia far away from the transition region
which we desire that they have. For instance, Eqs. (2) and (3) at the maxima of the cosine func-
tion (in the middle of PRM), where πx∕a ¼ 2nπ or x ¼ 2na (n ¼ 0; 1; 2; 3; : : : ), give

μðωÞ ¼ μ0μRðωÞ − iμ0

�
μIR þ μIL

2
þ μIR − μIL

2

�
¼ μ0½μRðωÞ − iμIRðωÞ�;

εðωÞ ¼ ε0εRðωÞ − iε0

�
εIR þ εIL

2
þ εIR − εIL

2

�
¼ ε0½εRðωÞ − iεIRðωÞ�;

while at the minima of the cosine function (in the middle of NRM), where πx∕a ¼ ð2nþ 1Þπ or
x ¼ ð2nþ 1Þa (n ¼ 0; 1; 2; 3; : : : ), give

μðωÞ ¼ −μ0μRðωÞ − iμ0

�
μIR þ μIL

2
þ μIR − μIL

2

�
¼ μ0½μRðωÞ − iμILðωÞ�;

εðωÞ ¼ −ε0εRðωÞ − iε0

�
εIR þ εIL

2
þ εIR − εIL

2

�
¼ ε0½εRðωÞ − iεILðωÞ�:

Thus, we see that in the middle of the PRM, we have the imaginary parts of permittivity and
permeability εIRðωÞ and μIRðωÞ, respectively, while in the middle of the NRM, we have the
imaginary parts of permittivity and permeability εILðωÞ and μILðωÞ, respectively, and in
Eqs. (2) and (3) these parameters can be chosen arbitrarily.

In order to obtain a constant wave impedance throughout the structure, we now introduce a
further requirement that the real and imaginary parts of the effective permittivity and permeabil-
ity satisfy the condition

μIRðωÞ þ μILðωÞ
2μRðωÞ − i½μIRðωÞ − μILðωÞ�

¼ εIRðωÞ þ εILðωÞ
2εRðωÞ − i½εIRðωÞ − εILðωÞ�

¼ βðωÞ; (4)
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where we again stipulate that the Kramers-Kronig relations remain valid, and we note that βðωÞ
is a complex number, as can easily be seen from Eq. (4).

The condition (4) is a restrictive mathematical requirement on the complex permittivity and
permeability that reduces our analysis to a special case. A justification for the requirement (4) is
based on the fact that both permittivity and permeability of many of the NRM structures reported
until now can be described by Drude or Lorentz models, i.e., that εðωÞ and μðωÞ are strongly
resonant and thus quite narrow. In order to obtain the widest possible frequency range of negative
refractive index, it is then useful to have the best possible overlap between the ranges of negative
values of the real parts of εðωÞ and μðωÞ. In an ideal situation their dispersions in the resonant
range would be therefore identical. On the other hand, in order to preserve causality, the imagi-
nary parts of both εðωÞ and μðωÞ must be positive and their dispersions are determined by the
real parts—thus the imaginary parts should also overlap. Actually, Eq. (4) can be seen as a con-
dition, although too stringent, for the maximum bandwidth of Drude- or Lorentz-type resonant
NRM structures.

Regarding the fabrication of NRM structures with largely overlapping complex εðωÞ and
μðωÞ, it was our reasoning that since NRM are artificial media they allow us, in principle,
to design εðωÞ and μðωÞ separately, as is the case with prototypical NRM, the split ring reso-
nators combined with the wire media.3,9 Using Eq. (4), we readily obtain

μ ¼ μ0
μIR þ μIL

2β

�
cos

�
πx
a

�
− iβ

�
; ε ¼ ε0

εIR þ εIL
2β

�
cos

�
πx
a

�
− iβ

�
: (5)

Except for condition Eq. (4), our method allows for arbitrary temporal dispersion. Upon

condition Eq. (4), the wave impedance Z ¼ Z0ZðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðω; xÞ∕εðω; xÞp

becomes constant
throughout the entire structure; as a result, there is no reflection on the graded interfaces between
the two materials. Equation (1) with μ ¼ μðω; xÞ and ε ¼ εðω; xÞ given by Eqs. (2) and (3),
respectively, is easily transformed into hypergeometric equations. If such an approach is used,
the derivation is rather simple and does not require the use of any specialized software. The
solutions to these equations involving the appropriate hypergeometric functions, for the
given set of parameters, are reduced to relatively simple elementary functions. For this particular
graded index structure, the exact solutions to the two differential equations (2) and (3) reduce to a
remarkably simple form

EðxÞ ¼ E0e
−κβx exp

�
−i

κa
π
sin

πx
a

�
; HðxÞ ¼ H0e

−κβx exp

�
−i

κa
π
sin

πx
a

�
; (6)

where E0 andH0 are the amplitudes of the electric and magnetic fields at the point x ¼ 0, respec-
tively, and

κ ¼ kþ iα ¼ ω

c
ffiffiffiffiffiffiffiffiffiffi
μRεR

p þ i
ω

2c

ffiffiffiffiffiffi
εR
μR

r
ðμIL − μIRÞ: (7)

From Eq. (7), one may draw a superficial conclusion that the loss of the entire structure stems
from the imaginary part of the permeability of both PRM and NRM only. However, this is not the
case, and Eq. (7) is just one way of writing the loss parameters of the structure. Using Eq. (4), it is
possible to formulate the equivalent result to Eq. (7) where only the imaginary part of the per-
mittivity of both PRM and NRM appears. Thus, Eq. (7) by no means implies that the contri-
bution from the imaginary part of permittivity is marginal and can be ignored. It is just a matter of
an arbitrary choice of presenting the quantities interrelated by Eq. (4).

Although both κ and β are complex numbers, it should be noted that the product κ × β is a real
number. From Maxwell’s equation (1), the field amplitudes are related by E0 ¼ Z0ZðωÞH0. The
exact solutions (6) are valid for arbitrary loss factors in NRM and PRM. In the PRM slab around
the origin, i.e., in the limit x → 0 we readily obtain the time-domain fields of the form (since
Eðx; tÞ ¼ Re½EðxÞeiωt�, etc.)

Eðx; tÞ ∼ E0e−γ1x cosðωt − kxÞHðx; tÞ ∼H0e−γ1x cosðωt − kxÞ (8)
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as expected for a regular plane wave in a right-handed material slab. In order to investigate the
behavior of the wave in the left-handed material slab, let us translate the solutions (6) by a dis-
tance a, i.e., let us assume x → xþ a. Using sinðα� πÞ ¼ − sin α in the limit x → 0, the time-
domain fields acquire the form

Eðx; tÞ ∼ E0e−γ2ðx−aÞ cos½ωt − ð−kÞx�; Hðx; tÞ ∼H0e−γ2ðx−aÞ cos½ωt − ð−kÞx�: (9)

In the results shown in Eqs. (8) and (9) for the fields, the loss factors γ1 and γ2 are given by

γ1 ¼
ω

c

ffiffiffiffiffiffi
εR
μR

r
μIR; γ2 ¼

ω

c

ffiffiffiffiffiffi
εR
μR

r
μIL; (10)

and they can be set freely by a suitable modeling of μIRðωÞ and μILðωÞ.
From the results in Eq. (8), it follows that the asymptotic wavevector in the right-handed

material is ~kRHM ¼ þk~ex, i.e., the wave propagates in the þx-direction. On the other hand,
from the results (9), it follows that the asymptotic wavevector in the left-handed material is
~kLHM ¼ −k~ex, i.e., the wave propagates in the −x-direction. However, the energy flux (the
Poynting vector) is in the þx-direction in both media. Thus, in the limit of small x, we have
the correct wave behavior in both the PRM and the NRM slabs. The wave changes the direction
periodically along the periodic structure, which will be obvious from the figures in Sec. 5.

4 Numerical Model of Metamaterials

A dispersive transmission line matrix (TLM) Z-transform model of the lossy MM-composite,
described in Ref. 37, is used here to verify the analytical solution for gradient index metama-
terials with arbitrary loss factor in PRM and NRM presented in Secs. 2 and 3. This model follows
the notation used in Refs. 38 and 39 to describe various types of conventional linear time-
dependent materials with the purpose that it can be easily incorporated into the algorithm of
the so-called Z-transform-based TLM method, given in Ref. 38.

The TLM Z-transform model of the lossy MM-composite is based on the Drude dispersive
model as it allows to characterize MM-composite response in a much wider frequency range
than, e.g., the Lorentz dispersion model. However, it could be easily adapted to describe
any higher-order material responses. In this paper, the Drude model describing the frequency
dependence of electric and magnetic conductivities is used

σeðωÞ ¼
σe0

1þ jωτe
¼ ω2

peτeε0
1þ jωτe

; σmðωÞ ¼
σm0

1þ jωτm
¼ ω2

pmτmμ0
1þ jωτm

; (11)

where ωpe;m, τe;m, and σe;m0 are the electric and magnetic plasma frequencies, and the corre-
sponding collision times and static conductivities, respectively. For NRM matched to free space,
the static electric and magnetic conductivities are related to σm0 ¼ η20σe0, where η0 is the wave
impedance of free space.

As an alternative, the Drude model describing the frequency dependence of permittivity and
permeability (i.e., electric and magnetic susceptibilities) of MM composites can be used, but
both models give identical results as shown in Ref. 37. In addition, using the relations

εðωÞ ¼ ε0

�
1 − j

σeðωÞ
ωε0

�
; μðωÞ ¼ μ0

�
1 − j

σmðωÞ
ωμ0

�
(12)

it is possible to determine permittivity and permeability from known electric and magnetic con-
ductivities and vice versa.

In Ref. 38, the Drude model was also used but only to describe electric conductivity of a
nonmagnetized plasma with collisions. Also, instead of the exponential Z-transform employed in
Ref. 38 to transfer frequency dependence of the considered material properties to the Z-domain,
the bilinear Z-transform is adopted in Ref. 37 to develop TLM Z-transform model of lossy MM
since the bilinear discretization provides a much more accurate scheme.
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In this section, the dispersive TLM Z-transform model of the lossy MM composite, based on
the Drude model for electric and magnetic conductivities of MM composite, will be briefly
described and also presented in a more general form through signal flow diagrams. For the
sake of brevity and clarity of the formulation to follow, only diagrams corresponding to the
y-component of the electric field and the z-component of the magnetic field are shown in
this paper. The calculation for other field components within the proposed numerical model
can also be illustrated using similar diagrams.

In general, the TLM Z-transform method algorithm can be described by the following three
equations:38

̱Fr ¼ ̱̱RT
1 ̱Vi − 0.5̱Vf; ̱F ¼ ̱̱tðzÞ̱Fr; ̱Vr ¼ ̱̱R ̱F −̱̱P̱Vi; (13)

where ̱Fr is the vector of reflected fields, ̱̱RT
1 is the TLM process input matrix, ̱Vi is the vector of

incident voltages, ̱Vf is the vector of free-source voltages, ̱F is the vector of total normalized
fields, ̱̱tðzÞ is the matrix of transmission coefficients, ̱Vr is the vector of reflected voltages, ̱̱R is
the TLM process reflection matrix, and ̱̱P is the TLM process input/output matrix.

For the modeling of general linear isotropic frequency-dependent materials, only the trans-
mission block ̱̱tðzÞ needs to be calculated. The second term of Eq. (13) can be then reduced, for
the considered field components, to

4Vr
y ¼ 4Vy þ geðzÞVy þ 4

�
1 − z−1

1þ z−1

�
χeðzÞVy; (14)

− 4irz ¼ 4iz þ rmðzÞiz þ 4

�
1 − z−1

1þ z−1

�
χmðzÞiz: (15)

Expressing electric and magnetic conductivities, given by the Drude model in Eqs. (11) and
(12), by using the normalized conductivity geðωÞ ¼ σeðωÞη0Δl and normalized resistivity
rmðωÞ ¼ σmðωÞΔl∕η0, respectively, and transforming them to the Z-domain using the bilinear
transformation jω → 2ð1 − z−1Þ∕½Δtð1þ z−1Þ� (Δl and Δt are the space and time discretization
steps in TLM, respectively), the following representations in the Z-domain are obtained

geðzÞ ¼ ð1þ z−1Þ gec
Bceð1− z−1Ace∕BceÞ

; rmðzÞ ¼ ð1þ z−1Þ rmc

Bcmð1− z−1Acm∕BcmÞ
; (16)

where gec ¼ σe0η0Δl, rmc ¼ σm0Δl∕η0, Ace ¼ 2τe∕Δt − 1, Acm ¼ 2τm∕Δt − 1, Bce ¼ 2τe∕
Δtþ 1, and Bcm ¼ 2τm∕Δtþ 1. Assuming frequency-independent susceptibility terms in
Eqs. (14) and (15), χeðzÞ ¼ χe∞ and χmðzÞ ¼ χm∞, TLM scattering process incorporating the
dispersive model of the lossy MM composite can be represented for considered field components
with the flow graph shown in Fig. 3. In addition, the calculation of the accumulators Sce and Scm
by using the blocks ḡeðzÞ and ḡmðzÞ in Fig. 3, respectively, is shown in Fig. 4.

Fig. 3 Dispersive transmission line matrix (TLM) Z-transform model for lossy electromagnetic
metamaterials (MM): (a) calculation of Ey in the time-domain and (b) calculation of Hz in the
time domain.
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The coefficients shown in Figs. 3 and 4 can be found after arranging that the frequency
dependence of electric and magnetic conductivity is represented as a function of the field
value at the previous time step by taking partial fraction expansions forms shown below

ð1þ z−1ÞgeðzÞ ¼ ge0 þ z−1
�
ge1 þ ¯geðzÞ

�
; ð1þ z−1ÞrmðzÞ ¼ rm0 þ z−1

�
rm1 þ ¯rmðzÞ

�
:

(17)

Inserting Eq. (16) into Eq. (17) gives

ge0 ¼
gec
Bce

; ge1 ¼
gec
Bce

ð2þ Ace∕BceÞ ¼ ge0ð2þ aceÞ; (18)

¯geðzÞ ¼ z−1
gecð1þ 2Ace∕Bce þ A2

ce∕B2
ceÞ

Bceð1 − z−1Ace∕BceÞ
¼ z−1bce

1 − z−1ace
; (19)

rm0 ¼
rmc

Bmc
; rm1 ¼

rmc

Bcm
ð2þ Acm∕BcmÞ ¼ rm0ð2þ acmÞ; (20)

¯rmðzÞ ¼ z−1
rmcð1þ 2Acm∕Bcm þ A2

cm∕B2
cmÞ

Bcmð1 − z−1Acm∕BcmÞ
¼ z−1bcm

1 − z−1acm
; (21)

where we introduce the parameters ace ¼ Ace∕Bce, acm ¼ Acm∕Bcm, bce ¼ ge0ð1þ 2ace þ a2ceÞ,
and bcm ¼ rm0ð1þ 2acm þ a2cmÞ. The coefficients Tce, Tcm, kce, and kcm can be easily found
after multiplying Eqs. (14) and (15) with ð1þ z−1Þ and replacing the products ð1þ z−1ÞgeðzÞ
and ð1þ z−1ÞrmðzÞ with the right-hand side of Eqs. (17) and (18), respectively

Tce ¼ ð4þ ge0 þ 4χe∞Þ−1; Tcm ¼ ð4þ rm0 þ 4χm∞Þ−1; (22)

kce ¼ −ð4þ ge1 − 4χe∞Þ; kcm ¼ −ð4þ rm1 − 4χm∞Þ: (23)

The results of the numerical calculations using TLM Z-transform for the present problem are
given and compared with the exact analytical results in the next section.

5 Results and Discussion

The exact analytical solutions for the real part of the electric field EðxÞ, given by Eq. (6), for two
different values of the numerical parameters (blue lines) are presented and compared to the cor-
responding numerical solutions (brown lines) in Figs. 5 and 6.

Both figures show that there is no reflection at the interfaces between the right-handed and
the left-handed material slabs in this particular case. This is expected, since in our case, the
impedance is constant throughout the entire space. From the presented curves, we see the
obvious change of the direction of the wave at the boundaries between the slabs (e.g., at x ¼
−a∕2 and x ¼ a∕2). Furthermore, we see in Fig. 5, for γ2 ¼ 7γ1 there is considerably stronger
attenuation of the signal in NRM compared to that in PRM. On the other hand, in Fig. 6, for
γ2 ¼ 1.5γ1 the attenuation of the signal in NRM is only slightly stronger compared to that in
PRM. Furthermore, both Figs. 5 and 6 show an excellent agreement between the exact analytic

Fig. 4 Calculation of (a) accumulator Sce and (b) accumulator Scm .
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results and the corresponding numerical results obtained using TLM Z-transform. The obtained
numerical and analytical curves are practically indistinguishable.

From the results (6), and utilizing the definition of the Poynting vector,40 we readily see that
the time average of the Poynting vector through the structure is given by

h~ΠðxÞi ¼ 1

2
Re½~EðxÞ × ~H�ðxÞ� ¼ 1

2
E0H0e−2κβx~ex. (24)

This is an exponentially decaying, strictly positive function, showing that the energy flows in
the positive x-direction throughout the entire periodical PRM-NRM structure, as expected. In
particular, for the case without losses the time average of the Poynting vector is constant through-
out the structure and equal to

h~ΠðxÞi ¼ 1

2
E0H0~ex: (25)

6 Conclusion

We have presented a simple exact analytical solution to Helmholtz equation for periodic struc-
tures with graded permittivity and permeability profile changing according to a cosine function
along the direction of propagation, with arbitrary loss factors in PRM and NRM. We analyzed a
special case of matched impedance throughout the structure where the real parts of the effective
permittivities and permeabilities have opposite signs and equal absolute values, while the

Fig. 5 Analytical results (solid blue lines) versus numerical (dashed brown) for the real part
of electric field EðxÞ as a function of x , with E0 ¼ 1, a ¼ 10−5 m, k ¼ 10;000 cm−1,
γ1 ¼ 0.25 × 10−2 k, and γ2 ¼ 7 γ1 ¼ 1.75 × 10−2 k.

Fig. 6 Analytical results (solid blue lines) versus numerical (dashed brown) for the real part
of electric field EðxÞ as a function of x , with E0 ¼ 1, a ¼ 10−5 m, k ¼ 10;000 cm−1,
γ1 ¼ 0.80 × 10−2 k and γ2 ¼ 1.5 γ1 ¼ 1.20 × 10−2 k.
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imaginary parts are fully arbitrary. We compared the exact analytical results with the correspond-
ing numerical results obtained using TLM Z-transform and obtained an excellent agreement
between the analytical and numerical results.

The model is valid for arbitrary temporal dispersion and arbitrary losses as long as the general
mathematical and physical constraints are satisfied (e.g., Kramers-Kronig relations).

It should be noted that, throughout the present paper, when we state that the loss factors can
be chosen arbitrarily, we tacitly assume that they can be chosen arbitrarily as long as the general
mathematical and physical constraints, e.g., Kramers-Kronig relations, are satisfied. Such
constraints do not, in general, impose serious restrictions to (theoretically) match the impedance
between the two media. The challenge is rather the practical realization of media which satisfy
the conditions posed in Eq. (4). The model allows a straightforward generalization to any peri-
odic refractive index profile using suitable Fourier series, including abrupt transitions between
two materials, which will be the subject of coming studies. Other future challenges include the
study of the extension of the present model to various two-dimensional and three-dimensional
structures and the case of arbitrary index profiles.
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