2 March 2012 Metastable electrical characteristics of polycrystalline thin-film photovoltaic modules upon exposure and stabilization
Author Affiliations +
Abstract
The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light soaked at 65°C; exposed in the dark under forward bias at 65°C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark-bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)
Chris Deline, Joseph A. del Cueto, David S. Albin, Steven Rummel, "Metastable electrical characteristics of polycrystalline thin-film photovoltaic modules upon exposure and stabilization," Journal of Photonics for Energy 2(1), 022001 (2 March 2012). https://doi.org/10.1117/1.JPE.2.022001 . Submission:
JOURNAL ARTICLE
14 PAGES


SHARE
Back to Top