Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology

Ilaria Cardinaletti
Jurgen Kesters
Sabine Bertho
Bert Conings
Fortunato Piersimoni
Jan D’Haen
Laurence Lutsen
Milos Nesladek
Bruno Van Mele
Guy Van Assche
Koen Vandewal
Alberto Salleo
Dirk Vanderzande
Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology

Ilaria Cardinaletti, a, * Jurgen Kesters, a Sabine Bertho, a Bert Conings, a Fortunato Piersimoni, b Jan D’Haen, a Laurence Lutsen, a Milos Nesladek, a Bruno Van Mele, d Guy Van Assche, d Koen Vandewal, e Alberto Salleo, f Dirk Vanderzande, a, c Wouter Maes, a, c and Jean V. Manca a, c

a Hasselt University, Institute for Materials Research (IMO-IMOMEC), Wetenshappark 1, Diepenbeek 3590, Belgium
b Universitätpotsdam, Institut für Physik und Astronomie, Potsdam-Golm 14476, Germany
c IMEC vzw, Associated Lab IMOMEC, Diepenbeek 3590, Belgium
d Vrije Universiteit, Physical Chemistry and Polymer Science, Faculty of Engineering Sciences, Brussels 1050, Belgium
e Technische Universität, Institut für Angewandte Photophysik, Dresden 01069, Germany
f Stanford University, Department of Materials Science and Engineering, Stanford, California 94305

Abstract. When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JPE.4.040997]

Keywords: organic photovoltaics; bulk heterojunction; thermal stability; phase separation; lifetime.

Paper 14009MV received Mar. 1, 2014; revised manuscript received Apr. 11, 2014; accepted for publication May 5, 2014; published online Jun. 10, 2014.

1 Introduction

In the last decades, organic bulk heterojunction (BHJ) solar cells have gradually evolved from a purely academic research topic to a promising emerging technology with world-wide R&D activities. With the first commercial applications on the market (e.g., the solar bags of Neuber) and efficiencies reaching >10%, the lifetime of the devices (predicted to be several years) becomes important. In order to test the durability of solar cells during operation, a variety of stress factors must be considered, such as humidity and oxidizing agents in ambient atmosphere, incident ultraviolet (UV), and visible radiation, and the high temperatures reached after prolonged exposure to sunlight. Since gathering fundamental knowledge on these degradation...

*Address all correspondence to: Ilaria Cardinaletti, E-mail: ilaria.cardinaletti@uhasselt.be
processes represents an important step toward the realization of more durable devices, various laboratories are investigating them and have agreed on testing protocols that allow for an easier comparison of results among different groups. Regarding the failure mechanisms in BHJ organic photovoltaics, several review papers can be found. Herein, we restrict ourselves to a brief overview of some of the most reported causes of losses in power conversion efficiencies (Table 1).

Reversible degradation can occur due to oxygen doping of some metal oxides, widely employed as interfacial layers between the BHJ and the cathode. On the other hand, exposure to light accelerates the reversible p-doping of the polymer as it absorbs oxygen from the atmosphere, with a resulting decrease in short-circuit current density \(J_{sc} \). Alongside these effects, other mechanisms lead to irreversible degradation and fatal device failure. The ingress of water into the device can cause fast oxidation of the low-work function metal cathode (Yb, Ca, Al). Moreover, oxygen was found to promote the rupture of the \(\pi \)-conjugated backbone in the electron donor polymer within the active blend under UV illumination, with a subsequent drop in absorbance. This phenomenon is less effective in the presence of a fullerene derivative, such as the most widely used acceptor material, [6,6]-phenyl-C_{61}-butyric acid methyl ester (PCBM).

Some of these issues can be prevented by appropriate encapsulation and can, thus, be considered as extrinsic degradation mechanisms. Next to extrinsic failures, a variety of intrinsic failure mechanisms, linked directly to the properties of the materials used (as further defined in Ref. [7]), may also occur. Table 1 provides a selection of the important extrinsic and intrinsic degradation phenomena observed in organic solar cells.

In this contribution, we focus on one particular intrinsic failure mechanism: the thermally induced disruption of the active layer blend (nano) morphology of polymer:fullerene BHJ organic solar cells (Fig. 1). During thermal annealing, the BHJ system gains energy, which allows it to order itself in a more thermodynamically stable way. This leads to a thermally induced separation of the polymer and fullerene phases. As a result, small PCBM crystals tend to group into larger crystalline domains, a phenomenon called Ostwald ripening. The formation of these PCBM-rich features leads to a decrease of the interfacial area between donor and acceptor and, thus, to a diminution of exciton dissociation and of the number of percolation paths to the electrodes. In this phase separation phenomenon, the glass transition temperature \(T_g \) of the blend plays an important role. Above \(T_g \), the blend component molecules become mobile, which allows diffusion and clustering of the fullerene derivatives.

Better insights regarding the nature of the phase separation process have been obtained through a variety of characterization methods. In the next paragraph, we provide a short overview of the analytical, thermal analysis and electro-optical techniques used to investigate the morphology of BHJ active layers at their initial stage as well as during and after thermal stress. Subsequently, the effects of thermally induced morphological changes on the photovoltaic properties are described. Models to predict the impact of structural degradation are introduced, together with analyses of its impact on the durability of the devices. Finally, we introduce various routes proposed to improve the thermal stability of the active layer blend morphology, such as the use of high-\(T_g \) polymers, the addition of

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Extrinsic and intrinsic degradation mechanisms in organic solar cells.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic degradation</td>
<td>Intrinsic degradation</td>
</tr>
<tr>
<td>Electrode oxidation</td>
<td>Phase separation of the polymer:fullerene blend</td>
</tr>
<tr>
<td>Photo-oxidation of the conjugated polymer/small molecule</td>
<td>Material diffusion from the electrodes into the active layer</td>
</tr>
<tr>
<td>Reversible oxygen-doping of interfacial metal oxides</td>
<td>Reversible charge accumulation at the interfaces with the electrodes after light exposure</td>
</tr>
<tr>
<td>Reversible p-doping of the photoactive layer due to oxygen</td>
<td></td>
</tr>
</tbody>
</table>

Cardinaletti et al.: Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology

functionalized/thermo-cleavable side-chains, cross-linking, or the photo-induced dimerization of the fullerene component.

2 Characterization of the BHJ Blend Stabil

2.1 Investigation of the Active Layer Morphology

The stability of the active layer blend morphology is crucial for the long-term operation of the solar cells. Optimal intermixing requires that the distance between the domain interfaces of the polymer and fullerene materials does not exceed the exciton diffusion length, typically in the order of 10 nm. A variety of techniques have been employed to determine on which length scale the intermixing occurs. Optical microscopy can be used to study the presence of large structures in the active layer film. Information on their height is obtained via stylus profilometry or atomic force microscopy (AFM) for micro- and nanoscale features, respectively. AFM represents a valuable tool to analyze the film topography and it also enables one to distinguish structures from the different components in the blend through peak force tapping and conductive-AFM. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques are used to image thin layers of organic semiconductors as well. Electron tomography reconstructions of three-dimensional volumes allow the investigation of the vertical disposition of donor-acceptor domains throughout a layer or throughout a cross-section of a device. Figure 2 (top row) shows an example of the evolution of the morphology of a poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV): PCBM (1:4 wt%) blend after various durations of thermal annealing at 110°C (above the \(T_g \) of the blend), as visualized by TEM. It is clearly observed that the initially finely dispersed phases rapidly evolve toward the formation of aggregated structures, identified as PCBM domains. Due to the thermal treatment, the PCBM molecules diffuse out of the originally intermixed photoactive layer and aggregate into large domains. This Ostwald ripening is observed for numerous polymer:fullerene blends.

Diffraction studies can also provide information on ordered structures in BHJ films. Selected-area electron diffraction (SAED) allows attributing the observed structures to specific blend components. X-ray diffraction measurements enable determination of the nature of the crystalline structures. In grazing-incidence geometry, information is obtained on the ordering and orientation of crystallites and crystalline planes in a thin film or on the stacking of the \(\pi \)-chains in largely amorphous materials. As an illustration of the use of diffraction techniques in the study of thermally induced Ostwald ripening in BHJ organic solar cells, the insets of Figure 2 (top row) show the crystalline nature of the PCBM aggregates formed during thermal annealing, as identified via SAED.

Together with UV-visible absorption and Raman spectroscopy, these microscopy and diffraction techniques can be used to determine the initial morphology of BHJ active layers as well as the changes in the blend structures due to annealing treatments or aging of the film.

![Fig. 1](https://example.com/fig1.png)

Fig. 1 Schematics of the evolution of fullerene aggregation in thermally annealed bulk heterojunction organic solar cells.
2.2 Thermal Analysis

It is nowadays recognized that a physicochemical approach based on dedicated thermal analysis protocols can strongly contribute to an increased understanding of (nano) morphology development and stabilization in BHJ organic solar cell blends. Calorimetric techniques, such as differential scanning calorimetry (DSC), modulated DSC (Ref.32), and especially rapid heat-cool calorimetry, allow characterization of both ordered and disordered material phases and determination of phase/state diagrams. The state diagram for the donor-acceptor system is of primordial importance for a systematic understanding of the phase-separation behavior and for designing appropriate thermal annealing and accelerated aging procedures (see also Sec.3.1).

In this respect, the crystallization kinetics of the crystallizable component(s) as a function of temperature in the temperature window of interest is indispensable. In the state diagram of poly(3-hexylthiophene) (P3HT):PCBM, for example, the glass transition of PCBM (ca. 140°C) and the role of mobility restrictions by (partial) vitrification was demonstrated. The results reported are in line with actual statements regarding the importance of disorder and the amorphous phase in the active layer. In addition, the state diagram also permits the detection of the presumed eutectic phase behavior, with a finely intermixed morphology of donor and acceptor constituents, which might lead to an efficient thermal procedure to predict/propose mixing conditions of new blends for optimum solar cell performance.

3 Effect of Active Layer Morphology Degradation on Photovoltaic Properties

As illustrated above, annealing at high temperatures promotes morphological rearrangement in BHJ blends because of the available thermal energy. The new phase distribution can have specific effects on the final photovoltaic performance of the devices, depending on the nature of the components. When a partially crystalline polymer (such as P3HT) is mixed with PCBM, an increase in hole mobility is reached by thermal annealing, as the latter promotes a strengthening of the crystalline character of the polymer. Concurrently, high temperatures induce PCBM aggregation. As a consequence, systems of this sort show an optimal annealing approach, which allows for high mobility in the crystalline polymer, but beyond which the formation of large PCBM domains causes a decrease in performance. On the other hand, when there is no ideal crystalline structure to be reached, as in the case of largely amorphous polymers, thermal annealing above the \(T_g \) of the blend leads to the formation of fullerene clusters only. In the following section, it will be shown that these thermally induced morphological changes influence the short-circuit current density, the fill factor (FF), and the open-circuit voltage \((V_{oc}) \), thus altering the final photovoltaic energy conversion efficiency.
3.1 Effect of Morphology Degradation on J_{sc}

The formation of aggregates of fullerene derivatives in BHJ films leads to a deterioration of the J_{sc} of the devices, partially due to a reduction of the interfacial area between the donor and acceptor domains, and partially due to the diminution of the photoactive area. For organic BHJ solar cells, it has been reported by several authors that the short-circuit current density (J_{sc}) decreases upon prolonged annealing and that the degradation occurs at a faster rate when higher annealing temperatures are applied. In blends of MDMO-PPV with PCBM, the degradation curves for J_{sc} have been fitted with Eq. (1) to reflect the Ostwald ripening occurring in the active layer during annealing:

$$J_{sc}(t) = J_{sc}(\infty) + J_{sc}(0) \exp(-k_{deg}\sqrt{t}).$$

(1)

In Eq. (1), t represents the annealing time and $k_{deg} = A \exp(-E_a/k_BT)$ is a rate constant that characterizes how fast the degradation evolves, with E_a the activation energy in eV, k_B the Boltzmann constant (8.62×10^{-5} eV K$^{-1}$), and A, a constant that depends on the degradation mechanisms and the experimental conditions. Figure 3 shows the fitted curves (solid lines) and the measured decay in short circuit current at different annealing temperatures.

A similar approach was proposed to predict the lifetime of devices using the Lipshitz-Slyozov theory for spinodal decomposition, which predicts domain-size (R) evolution following $R \sim t^n$, with n a material-dependent exponent, stressing the strong relationship between the employed polymer:fullerene system and its inherent rate of morphological degradation.

The link between the rearrangement of the active blend’s structure on the nanoscale and the drop in J_{sc} has also been investigated by Schaffer et al. through the acquisition of $I-V$ characteristics and in situ micro-focused grazing incidence small-angle x-ray scattering (μGISAXS) patterns of P3HT:PCBM devices during operation. They documented the change in P3HT domain size and density within the active layer blend matrix and introduced a model to quantitatively determine the J_{sc} of a device from the recorded morphology data by correlating the active interfacial area between the two species in the blend with the dimension of the structures, as measured with μGISAXS.

3.2 Effect of Morphological Degradation on Other Photovoltaic Parameters

Thermal annealing not only has an effect on J_{sc}, but it also influences the open-circuit voltage and FF. It was reported that the nanomorphology of the active layer plays a significant role in the determination of V_{oc} due to the correlation between the latter and the energy (E_{CT}) of the interfacial donor-acceptor charge transfer complex (CTC). E_{CT} can be determined through modeling the sub-bandgap photocurrent spectra as measured by Fourier-transform photocurrent spectroscopy, an ultrasensitive technique that allows one to measure the external quantum efficiency over nine orders of magnitude. Given the reported linear relation between E_{CT} and V_{oc}, the variation of E_{CT} during the aging process was studied to understand the origin of
the drop in V_{oc} upon morphological reorganization. Thermally annealed MDMO-PPV: PCBM devices showed a reduction of V_{oc} and E_{CT}, with the PCBM photocurrent peak at 1.74 eV becoming more prominent due to the formation of PCBM aggregates and the amount of interfacial CTCs decreasing. This indicates less interaction between the donor and acceptor and, thus, a more phase-separated BHJ blend morphology. A more detailed discussion on the effect of structural factors on V_{oc}, E_{CT}, and photovoltaic performance in organic solar cells is given in a recent paper by Vandewal et al.

FF is also observed to change in relation to reorganizations of the materials at the nanoscale. The optimal morphology of the BHJ photoactive layer blends ensures good percolation paths from the exciton dissociation site to the collecting electrodes. When the mixing of donor and acceptor domains is not optimal any more, as in the case of thermally degraded devices, the number of percolation paths is reduced and the series resistance of the devices increases, which leads to a decrease of FF.

4 Methods to Stabilize the BHJ Active Layer Morphology

Thermally induced structural changes in BHJ active layers at operating temperatures represent an intrinsic limit to the employability of certain material systems in outdoor conditions. in which temperatures > 100°C can be reached (temperatures up to 175°C were measured for silicon modules in Arizona). For this reason, we dedicate this section to some of the methods that have been proposed to improve the morphological stability of photoactive material blends.

A careful choice of the donor-acceptor ratio and the casting solvent can result in not only more efficient, but also more durable organic solar cells. Depositing photoactive layers via different solvents was demonstrated to dictate the T_g and the ordering of the $\pi-\pi$ stacking in amorphous poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzo-thiadiazole)] (PCDDBT):[6,6]-phenyl-C$_{71}$-butyric acid methyl ester (PC$_{70}$BM) blends. This system, stable at outdoor solar cell operating temperatures, thanks to its high T_g (~130°C), needs to be optimized through processing conditions or solvent annealing and has been determined to reach an extrapolated lifetime of seven years. Removing residual solvents by treating the layers with methanol also proved to reduce thermally induced fullerene aggregation. Additionally, a lower regioregularity and higher purity of the donor polymers, as well as the addition of block copolymer compatibilizers, has also been demonstrated to result in more stable films.

It was shown that employing polymers with a T_g higher than the temperature agreed on for standard testing [85°C (Ref. 3)] helps to slow down PCBM clustering over the lifetime of the solar cells, due to the high rigidity of the polymer chains in said conditions. An example is shown in Fig. 2 (bottom row), where TEM analysis indicates that the employment of a high-T_g PPV polymer results in a more thermally stable blend as compared to standard MDMO-PPV. A similar comparison was reported by Vandenberg et al. (poly[2-methoxy-5-(2’-phenylthioxy)-1,4-phenylene vinylene] versus MDMO-PPV). A high T_g also ensures stability of the electronic properties of (semicrystalline) polymers.

A number of research groups have investigated the effect of polymer side-chain substitution on the blend stability. Kesters et al. showed that the introduction of a small amount (5 to 15%) of functionalized side-chains in poly(3-alkylthiophene) (P3AT) copolymers results in a considerably increased blend stability upon prolonged thermal stress. Devices employing functionalized P3AT copolymers in blends with PCBM showed initial efficiencies comparable to regular P3HT:PCBM solar cells and drastically reduced fullerene aggregation at the ISOS-3 standard testing temperature of 85°C for a timescale of 700 h. Figure 2 illustrates TEM images of functionalized P3AT copolymer:PCBM blends after different thermal annealing times (in comparison with standard P3HT:PCBM). SAED allowed identifying the formed clusters as PCBM crystals.

The use of block copolymers containing both donor and acceptor domains has also been proposed as a strategy to improve photoactive layer stability, although their synthesis remains challenging. In these compounds, the donor and acceptor phases are covalently linked, allowing the material to be employed in single-component organic solar cells with stable morphology.
Furthermore, rigid polymers can also be obtained by thermal cleaving of the side-chains, introduced to ensure good solubility but, in principle, not needed for optoelectronic functionality. This strategy has also been proven to lead to morphologically stable BHJ films.59

Another popular strategy uses cross-linking of the active materials, either via polymer or fullerene component, to freeze in the optimal morphology. This can, for instance, be achieved by adding cross-linkable groups to the polymer side-chains68 and curing the film with UV light. The employment of a cross-linked fullerene derivative, aligned in vertical nanorods, achieving a (quasi)ordered organic/organic nanostructure, allowed for an improved thermal stability, as well.69

Modifying the nature or the number of side-chains on the fullerene results in more amorphous compounds,55,70 which can also lead to an improved morphological stability. Liao et al. were able to exploit supramolecular interactions to impose a given order to the BHJ film and ensure structural firmness. They introduced a fullerene derivative, [6,6]-phenyl-C 61-butyric acid pentafluorophenyl ester (PCBPF6), in which the methyl group of PCBM is substituted by a pentafluorophenyl moiety, to produce solar cells with enhanced high-temperature stability.71

Piersimoni et al.20 and Li et al.72 demonstrated the stabilizing effect of fullerene photodimerization on the active layer blend morphology. Light soaking of polymer:PCBM films before or during annealing above the T_g of the blend resulted in reduced fullerene aggregation, although the effect becomes less appreciable with increasing temperatures20 due to thermally induced dissociation of the dimers. These experiments were conducted using either PCBM or PC70BM, in combination with MDMO-PPV, P3HT, and PCDTBT as donor polymers (annealing the latter at higher temperature because of the elevated T_g of the polymer). Optical microscopy images, shown in Fig. 5, confirmed that thermal aging in the dark promotes the formation of clusters, attributed to the PCBM, while the same treatment under illumination does not significantly affect the morphology of the BHJ layers. While these images prove the stabilizing effect of this photoreaction on the blends’ morphology, its impact on the performance of devices resulted strongly system-dependent. Indeed, it can contribute to raising the J_{sc} in PCDTBT-based solar cells,2 but it was also reported by other authors to be responsible for performance degradation when combined with a bithiophene-co-thiazolothiazole push-pull copolymer.73
5 Conclusions and Outlook

Prolonged storage or operation of polymer:fullerene BHJ organic solar cells can result in athermally induced disruption of the optimal photoactive layer morphology via phase separation and Ostwald ripening of the fullerene domains, leading to a significant reduction of the photovoltaic performance. Improving the morphological stability of the photoactive blends upon thermal stress is, therefore, an important challenge for future commercialization of these devices.

We briefly reviewed the degradation mechanisms resulting in performance failure, as well as the main techniques employed to characterize the thermally induced changes in the active layer (nano)morphology. The most obvious indication for BHJ structural damage is the formation of large crystalline domains of the fullerene derivative, with a consequent reduction of the interfacial area between the donor and acceptor domains, and a consequent negative effect on the photovoltaic parameters. Insights on the underlying mechanisms provide the foundation to model the effect of this structural reorganization on the photovoltaic parameters, allowing the prediction of device lifetimes and degradation rates.

Toward more intrinsically stable BHJ organic solar cells, several roads have been proposed and are still under investigation, regarding the choice of materials, the exploitation of observed phenomena, and the modification of compounds. The reviewed solutions will undoubtedly continue to find their way toward the development of stable organic photovoltaic devices. On the other hand, dedicated thermal analysis of the blends, as well as accurate investigation of the morphological changes in degraded photoactive layers, can be regarded as valuable tools in the direction of intrinsically stable organic solar cells.

Acknowledgments

The authors would like to acknowledge the Interreg-project ORGANEXT and the Fund for Scientific Research, Flanders (Belgium) (FWO) for the financial support.

References

Biographies of the authors are not available.