13 March 2015 Micro-optical designs for angular confinement in solar cells
Author Affiliations +
We identify and evaluate a variety of efficient and feasible micro-optics for confining the radiative emission of solar cells. The key criteria used for assessing viable designs are (1) high optical efficiency for both the transmission of impinging solar beam radiation and the external recycling of isotropic cell luminescent emission; (2) liberal optical tolerance; (3) compactness; and (4) being amenable to fabrication from existing materials and manufacturing processes. Both imaging and nonimaging candidate designs are presented, and their superiority to previous proposals is quantified. The strategy of angular confinement for boosting cell open-circuit voltage—thereby enhancing conversion efficiency—is limited to cells where radiative recombination is the dominant carrier recombination pathway. Optical systems that restrict the angular range for emission of cell luminescence must, by reciprocity, commensurately restrict the angular range for the collection of solar radiation. This, in turn, mandates the introduction of concentrators, but not for the objective of delivering concentrated flux onto the cell. Rather, the optical system must project an acceptably uniform spatial distribution of solar flux onto the cell surface at a nominal averaged irradiance of 1 sun.
© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Jeffrey M. Gordon, Jeffrey M. Gordon, Daniel Feuermann, Daniel Feuermann, Heylal Mashaal, Heylal Mashaal, } "Micro-optical designs for angular confinement in solar cells," Journal of Photonics for Energy 5(1), 055599 (13 March 2015). https://doi.org/10.1117/1.JPE.5.055599 . Submission:


Thin solar concentrator with high concentration ratio
Proceedings of SPIE (September 08 2013)
The rise of non-imaging optics for rooftop solar collectors
Proceedings of SPIE (September 06 2016)
Secondary optics for Fresnel lens solar concentrators
Proceedings of SPIE (August 18 2010)
Planar concentrators at the etendue limit
Proceedings of SPIE (August 31 2005)
Nested aplanatic optics
Proceedings of SPIE (September 21 2011)

Back to Top