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Abstract. Conjugated polymers are potential materials for photovoltaic applications due to their
high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost
solar cells. A bulk heterojunction (BHJ) structure made of donor–acceptor composite can lead to
high charge transfer and power conversion efficiency. Active layer morphology is a key factor for
device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coat-
ing), post-treatment (e.g., annealing and UVozone treatment), and use of additives are typically
used to engineer the morphology, which optimizes physical properties, such as molecular con-
figuration, miscibility, lateral and vertical phase separation. We will review electronic donor–
acceptor interactions in conjugated polymer composites, the effect of processing parameters and
morphology on solar cell performance, and charge carrier transport in polymer solar cells. This
review provides the basis for selection of different processing conditions for optimized nano-
morphology of active layers and reduced bimolecular recombination to enhance open-circuit
voltage, short-circuit current density, and fill factor of BHJ solar cells. © 2015 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JPE.5.057207]
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1 Introduction

Humanity has already faced consequences of wide use of nonrenewable natural resources.
Global warming and ozone depletion, caused by the emissions of greenhouse gases during
the burning of fossil fuels, as well as air pollution and soil erosion, are only several examples
of irreversible changes in the environment. This clearly highlights the need for a pollution-free,
renewable source of energy, hopefully in the near future, to minimize the adverse impacts to our
Earth. Some renewable energy sources, such as wind, hydro, biomass, geothermal, and solar, are
replacing conventional fossil fuel technology. However, these have certain limitations, such as
low wind strength and increase in methane gas, which is harmful to the ozone layer. So the search
for more environmentally friendly, sustainable, and inexpensive renewable energy has led
researchers and the industry’s interest toward photovoltaic solar energy.

Inorganic photovoltaics (PVs) constitute a matured technology having industrial and large
market potentials. Traditional crystalline silicon solar cells dominate a major portion of the
global PV market. However, the cost for this type of solar cell is very expensive and needs
government subsidies. This might be one of the reasons for the small (∼0.1%) portion of energy
attributed to solar compared to global electricity generation.1,2 Organic PVs have the potential to
produce cheap and affordable energy with ubiquitous energy resources.

Organic PVs have attractive attributes, such as low cost, mechanical flexibility, light weight,
abundancy, sustainability, environment friendliness, and manufacturing ease on large-area flex-
ible substrates.3–8 Bulk heterojunction (BHJ) polymer solar cells comprising an interpenetrating
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network of a photoactive conjugated polymer (an electron donor) and a fullerene derivative (an
electron acceptor) provide an efficient interfacial area for exciton dissociation and a bicontinuous
pathway for effective charge transport. Photons are absorbed in the conjugated polymer resulting
in the generation of excitons that diffuse to the interface between the polymer and fullerene
derivative. The generated excitons dissociate at the interface into electrons and holes, in
which electrons are accepted by the fullerene derivative.9

Poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as a
BHJ solar cell for first time in 1995 (Ref. 10) as a donor and fullerene derivative
phenyl-C61 butyric acid methyl ester (PCBM) as the acceptor. Clear insight was gained by
observing the efficient electron transfer from a polymer to fullerene, which was previously
shown to take place on the femtosecond scale.11 Although the dissociation of the primary photo-
excitation, singlet excitons, was very efficient, the generated photocurrent was still rather low.
Shaheen et al.12 enhanced the efficiency of a PPV:PCBM BHJ system to 2.5% by selecting
solvents with a higher boiling point, showing the great potential for this type of photovoltaic
device. Padinger et al.13 presented a further increase in the power conversion efficiency by using
a blend of a poly(3-hexyl thiophene) donor (P3HT) in conjunction with PCBM. It was shown
that thermal annealing at a temperature above the glass transition of the polymer enabled an
enhancement of the efficiency from 0.4 to 3.5%. Recently, results have shown that the efficiency
of the BHJ solar cell could be further increased by adding additives, which allow an increased
control of the phase segregation during film formation of a polymer–fullerene blend, yielding an
efficiency up to 6%.14 In addition, the photoconversion efficiency of polymer solar cells PSC has
increased from ∼2.5% in 2001 to >8% since 2011 or 10%, which was recently obtained through
the development of new electron donor polymers.15

In this article, we will discuss the concepts to improve the efficiency of the BHJ solar cells
and the effects of nanomorphology on the performance of solar cells. First, the device geometry
of BHJ solar cells and several prospective low-bandgap polymers are reviewed. Second, the
effects of processing parameters (film deposition, postheat treatment, effect of additives, and
UVozone treatment) on device performance are discussed. Finally, transient photoconductivity
measurements are analyzed to study the charge transport in BHJ solar cells. A thorough under-
standing of the fundamentals of device optimization is required in order to expand their limits in
the future.

2 Electronic Donor–Acceptor Interactions in Conjugated Polymer
Composites for Solar Cell Applications

Figure 1 depicts a general schematic of polymer solar cells where the formation of excitons takes
place upon exposure to light. Exciton diffusion length (LD) and donor–acceptor interface are two
major factors that determine the exciton diffusion efficiency (ηED). Exciton diffusion length in
conjugated polymers is in the range of 4 to 20 nm. These excitons will be dissociated into

Fig. 1 Energy band diagram of polymer solar cells showing all processes of operation. Process:
(1) photon absorption; (2) and (3) excitongeneration and diffusion; (4) exciton separation; (5) and
(6) charge transport and collection. Reproduced with permission from Royal Society of
Chemistry.16
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electrons and holes when they reach the interface between the donor and acceptor. Thereafter, the
separated charge carriers (electrons and holes) move toward their respective electrodes.

Conjugated polymers based on organic solar cell can be fabricated from low-cost solution
processing techniques, including spin-coating, spray-coating, and ink-jet printing.17,18 The
mechanism for converting light into electricity in organic solar cells is governed by the absorp-
tion of photons in the active layer, which is followed by exciton formation, exciton diffusion,
exciton dissociation, charge transport, and charge collection. Figure 2 shows the mechanism of
photogenerated exciton formation upon light absorption, exciton dissociation at the donor–
acceptor interface, and then transportation of the dissociated charges out of the film. Broad-
bandgap polymers (1.3 to 1.4 eV) are selected for broad band light absoption to give high current
density in solar cells.4,16 The energy band offsets between donor and acceptor LUMOs should be
in the range of 0.4 eV for efficient charge transfer between the donor and acceptor.4,16 Optimized
nanomorphology is required for both exciton diffusion and charge transport. The donor and
acceptor phase separation should be in the range of ∼10 to 20 nm with a continuous pathway
so that free carriers can efficiently transport to their corresponding electrodes.4 Examples of
donor/acceptor composites include P3HT or poly(diketo-pyrrolopyrrole-terthiophene)
(PDPP3T)–fullerene derivatives {[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM),
[6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), Indene-C60 bisadduct} and other combi-
nations using low-bandgap polymers.

2.1 Polymer–Fullerene Bulk Heterojunction Blends

Most common polymers used in BHJ solar cells, including MEH-PPV,20–23 poly[2-methoxy-5-
(3′,7′-dimethyl-octyloxy)-1,4-phenylene vinylene],24–28 P3HT,29–33 PDPP3T,34,35 and poly
(cyclopentadithiophene-alt-benzothiadiazole),36 are reported to form phase separated donor–
acceptor blends with fullerene derivatives, such as PC60BM and PC70BM. The optimization
of the polymer–fullerene blend is based on tuning the electronic properties and interactions
of the donor and acceptor components, which will generate large numbers of free charge carriers
without significant loss. Proper understanding of electronic characteristics of the individual com-
ponents (e.g., absorption coefficient, charge carrier mobility) helps to design next-generation
high-efficiency solar cells.

Figure 3(a) shows a charge transfer from P3HT to PCBM. Figure 3(b) shows charge transfer
from P3HT to PC60BM with LUMO (−3.2 eV), which is higher than that of PCBM (−4.2 eV)
and has a sufficient energy offset for exciton dissociation and charge transfer between P3HT and
PCBM. The bandgap of donor polymers need to be reduced to broaden the absorption. The
commonly used polymer P3HT has absorption until 650 nm, which uses only 30% of the

Fig. 2 Cartoon depicting separation of excitons into e-h pairs in polymer solar cell: (a) generation
and diffusion of exciton, (b) dissosciation of exciton, and (c) transport of e-h pairs. Reproduced
with permission from South Dakota State University.19
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solar energy reaching the Earth. In addition, the HOMO/LUMO energy levels of P3HT are
higher in comparison to fullerene derivatives. It is necessary to develop low-bandgap polymers
with optimized energy band offsets. The low-bandgap polymers have the potential to absorb
more sunlight, which leads to higher short-circuit current density (Jsc). The proper alignment
of the HOMO/LUMO level of polymer and fullerene provides higher open-circuit voltage.
Reports show that polymers with bandgaps of 1.2 to 1.5 eV have been developed.5 Several
novel polymers with HOMO/LUMO energy levels −5.5 and −3.6 eV, which is lower than
the HOMO/LUMO energy levels of P3HT, have been synthesized.37,38 Figure 4 is a nonexhaus-
tive list of the molecular structures of various low-bandgap polymers, including chemical struc-
ture, HOMO, LUMO, bandgap, and their experimentally achieved efficiencies in single and
multijunction devices. These lists of low-bandgap polymers will help researchers working in
the field of organic PVs and perovskite solar cell to select an appropriate interconnecting layer.5

3 Effect of Processing Parameters and Morphology on Solar Cell
Performance

The device architecture of a polymer solar cell consists of an electron and hole transport layer
with the photoactive layer sandwiched between them. The photoactive layer may be a bilayer
structure or BHJ structure.51,52 In bilayer devices, different types of charge carriers (e.g., elec-
trons or holes) travel independently within separate materials and bimolecular recombination is
largely suppressed. However, the disadvantage is poor exciton dissociation and charge transfer
due to the minimal donor–acceptor interface. This limitation was finally overcome by the con-
cept of BHJ, where the donor and acceptor materials are intimately blended through the bulk.
This helps in charge separation throughout the volume and within the exciton diffusion length. In
order to build higher-efficiency devices, several processing parameters are taken into consider-
ation. The processing parameters may include selection of solvents, blend ratio between polymer
and fullerene, solution concentration, annealing temperature, spin speed (thickness), active layer
treatment (solvent or thermal annealing), treatment to electron and hole transport layer (UV
ozone treatment), deposition of electrode, and use of additives. Binary or ternary solvents in
different volume ratios have also been studied to vary nanoscale morphology that has an effect
on device performance.53

Different types of solvents have been used for processing the active layer in a BHJ solar cell.
The morphology of the active layer varies with different types of solvents used, which affects the
overall efficiency of solar cells. Some polymers are more soluble in one solvent whereas they are
less soluble in others. Some polymers, like P3HT, increase their crystallinity after thermal
annealing and show higher device performance. Upon thermal annealing, the chain of the poly-
mer becomes mobile and the polymer becomes more organized to form an ordered structure. A

Fig. 3 (a) shows a charge transfer from P3HT to PCBM. (b) shows charge transfer from P3HT to
PC60BM with LUMO (−3.2 eV), which is higher than that of PCBM (−4.2 eV) and has a sufficient
energy offset for exciton dissociation and charge transfer between P3HT and PCBM.
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slow growth process called solvent annealing also affects the performance of P3HT. Li et al.
showed that the ordered structure is destroyed due to the fast growth process.54 Thus, the degree
of self-ordering can be varied by controlling the film growth rate, i.e., the time it takes for the wet
film to dry.

The study of Ngo et al.55 based on spin-coating versus spray-coating is shown in Fig. 5(a). It
provides a comparative study on the active layer deposition technique that plays a significant
role in the film morphology. The phase image in Fig. 5(b) shows a self-assembled dotted
polymer morphology in the active layer for spin-cast films and a fibrillar structure for spray-
coated film. Self-assembled fibrillar structures were mainly found due to the longer evaporation
time taken by the solvent. These fibrillar structures contribute to enhancing charge carrier
mobility by providing fewer resistant charge transport pathways leading to a higher Jsc and
fill factor.
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Fig. 4 Nonexhaustive list of typical low-bandgap polymer donor materials in organic solar cells.
Reproduced with permission from Royal Society of Chemistry.5
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Ngo et al. also mentioned controlling the morphology of widely used ZnO as an electron
transport layer (ETL) into more compact and smoother films. In the same work, they also men-
tioned that the morphology of widely used ZnO as an ETL could be controlled into a more
compact and smoother film using the spray-coating technique. However, deposition of both
the ETL and active layer via a spray-coating technique led to lower efficiency due to the
poor interface formed between these two layers.

A study conducted by Adhikary et al. showed optimum UVozone treatment time on sol gel
prepared ZnO as ETL leads to an improved device performance of an inverted BHJ polymer
solar cell.56 They compared three different conditions of UVozone exposure time on ZnO: unex-
posed, optimally exposed (5 min), and overexposed (20 min). The unexposed ZnO film was
thought to be contaminated by organic residues originating from the sol gel method acting
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Fig. 4 (Continued.)
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as recombination centers. Optimally exposed ZnO film yielded the highest device efficiency,
while ZnO film exposed for a longer UV ozone treatment time led to the formation of p-
type defects (oxygen interstitials) in ZnO. These defects push the ZnO Fermi level further
away from the vacuum level and decrease the Wurtzite crystallinity, lowering the electron extrac-
tion efficiency of the layer and resulting in poor device efficiency.6 The JV characteristics for
three different UV ozone treatment conditions are shown in Fig. 6.

Power conversion efficiency has been correlated to the morphological control in BHJ solar
cells, which has become a major part of organic solar cell research.57–59 Favorable morphology
has been suggested with adjustment of different processing parameters like thermal annealing,
solvent vapor annealing, high boiling solvents, inorganic nanocrystals, and additives.60 However,
processing with solvent additives in addition to the primary host solvent has been found effective
in improving active layer morphology.60–62 Morphology of the organic solar cell active layer can
be controlled with various additives, such as 1,8di-iodooctane (DIO), chloronepthlene (CN), 2,3
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pyridinediol, nitrobenzene, and octane dithiol (ODT). Solvent additives have been adopted and
have been compatible with large-scale production. The additives induce better nanoscale phase
separation63–65 for the same or a similar polymer structure and also lead to higher domain purity
or crystallinity in the polymer phase.17 Investigation has been carried out on material selection,
interpretation of the additive interaction with BHJ materials, and variation of morphology at
different length scales. The role of solvent additives has been an important resource for further
improving the efficiency of organic solar cells.

Two methods have been widely used in selecting host solvents and additives. (1) Host sol-
vents usually possess a high solubility to both electron donor and acceptor molecules, whereas
solvent additives have selectively higher solubility to one of the two components, typically with
the acceptor. (2) Solvent additives are typically less volatile with a higher boiling point than the
host solvent.60,61 A different study has been conducted to remove the residual additives by slow
drying, high vacuum treatment, or by washing with a low boiling point solvent additive, such as
methanol, to enhance the performance of BHJ solar cells.66 Crystal orientation, interlayer spac-
ing, crystal size, and number of crystals depend upon the type of BHJ solar cells under study. It is
observed that low vapor pressure solvent additives have a pronounced effect on enhancing crys-
tallinity in most BHJs. In molecular systems, high crystallinity during processing obviously
improves for carrier mobility and strong intermolecular interaction. Venkatesan et.al.17 compared
the effects of several additives on the morphology of the active layer. Results showed that CN
and DIO additives gave an optimal morphology, which helped to increase the overall efficiency
of BHJ solar cells. Charge transport and bimolecular recombination dynamics were correlated

Fig. 5 Phase images indicating active layer deposited via (a) spin coating and (b) spray coating
techniques. Reproduced with permission from Ref. 10.

Fig. 6 J − V curves for poly(diketo-pyrrolopyrrole-terthiophene) (PDPP3T): [6,6]-phenyl-C61-
butyric acid methyl ester (PC60BM) inverted solar cell with different UV ozone treatment time
on ZnO films. Reproduced with permission from Ref. 56.
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with nanomorphology in polymer solar cells. Domain purity and domain size affect the charge
transport and recombination dynamics.67,68 Different characterizing tools have been used for
insight study of nanoscale morphology. Atomic force microscopy, Kelvin probe force micros-
copy, transmission electron microscopy, energy field transmission electron microscopy
(EFTEM), x-ray diffraction, soft x-ray scattering, grazing incidence wide-angle x-ray scattering,
and selected area electron diffraction are basic characterizing tools for morphology study at the
nanoscale range.

The effects of additives on nanoscale morphology revealed with EFTEM were shown in
Fig. 7.17 The EFTEM analysis gave deep insight into the local domain of both donor and acceptor
phases. The donor and acceptor mapping for each type of film was compared. The donor polymer
showed a bright region in 19� 4 eV, whereas the acceptor fullerene showed bright spots in the
corresponding 30� 4 eV due to the variation in their low-eV plasmon peak. Contrast inversion
was not observed for a polymer–fullerene mixture without any additives showing a highly inter-
mixed domain. On the contrary, contrast inversion was clearly observed for films processed with
additives showing higher purity in either polymer-rich or acceptor-rich domains.

4 Charge Carrier Transport in Polymer Solar Cells

Charge transport and bimolecular recombination dynamics play an important role in the opti-
mization of efficient polymer solar cells. In BHJ solar cells, ultrafast photoinduced charge trans-
fer across the donor–acceptor interface takes place due to the absorption of incident light. These
mobile electrons and holes are swept out and collected at the electrodes by the internal electric
field, which is proportional to the magnitude of the internal field and limited by carrier mobility.
Efficient charge transport across the respective electrodes takes place with the large donor and
the acceptor interfacial area and percolating paths.69

The power conversion efficiency is limited by the recombination loss in the solar cells.
Carrier collection by sweep-out to the electrodes and driven by the internal field must occur
prior to carrier recombination within the cell.70 Transient photocurrent (TPC) and photovoltage
(TPV) measurements can provide insight into the physical mechanisms of solar cells. In

Fig. 7 (a) to (d) Energy field transmission electron microscopy (EFTEM) mapping of donor
(19þ 4 eV), and (e) to (h) EFTEMmapping of acceptor (30þ 4 eV) for PDPP3T:PCBM films proc-
essed with [1,8di-iodooctane (DIO), chloronepthlene (CN), and octane dithiol (ODT)] and without
additive (pristine), respectively. The bright regions (e.g., yellow marked) in the donor map
[Fig. 6(a)] are also bright regions [Fig. 6(e)] in the acceptor map for pristine film. However, the
film processed with DIO, CN, and ODT additive’s bright regions [Figs. 6(b), 6(c), and 6(d)] cor-
respond to the dark regions in the acceptor maps [Figs. 6(f), 6(g), and 6(h)].
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addition, it is necessary to understand and improve the charge carrier transport through the BHJ
nanostructure for high-efficiency organic photovoltaic devices.

The main recombination process that limits solar cell performance is a nongeminate recom-
bination loss.71 The Langevin model is used to describe the second-order nongeminate recom-
bination that takes place in these types of solar cells, which depends upon the concentration of
free electrons and holes. The recombination rate is charge carrier mobility dependent and is
related to these free carriers through the recombination coefficient. The variation of the apparent
recombination order originates from device processing conditions, which leads to variations in
the crystallinity of the photoactive layer causing different trap concentrations.72 Therefore, the
role of the polymer crystallinity on the bimolecular recombination order and defect density needs
to be quantified.

TPV measurement is an optoelectronic technique in which devices are held at an open-circuit
condition to measure the loss time of charge carriers with high input impedance of the oscillo-
scope.73 The white light is used along with a laser pulse to create the open-circuit condition that
depends on the background light intensity. After reaching some Voc level, the short pulse of the
dye laser is used to create a TPV under the open-circuit condition. The short laser pulse creates
excess charge carrier density (Δn) with an increase in voltage (ΔV). The voltage decay in TPV
acquired using 1 MΩ input impedance of oscilloscope is given by

ΔV ¼ Voc þ ΔVoexp
ð−t∕τÞ; (1)

where τ is the recombination time and Voc is the open-circuit voltage.
TPC is a method where the device is held at the short-circuit condition with a short pulse

applied to generate excess carrier across the device.74 TPC gives the collection time of the car-
riers that are generated with a short pulse. The total charge carrier density can be calculated using
TPC in conjugation with TPV. The transient current is obtained by calculating the current that
flows through the small resistance using Ohm’s law. The current decay in TPC acquired is given
by

ΔI ¼ ΔIoexpð−t∕τÞ; (2)

where ΔIo ¼ ΔVo∕R, and R is the 20 Ω resistance used to put the device in a short-circuit
condition.

The total charges that are generated can be calculated by integrating the current that is pro-
duced during the TPC technique:

ΔQ ¼
Z

Idt: (3)

The total charge carrier density is calculated using the differential capacitance, which is
defined as

dc ¼ ΔQ
ΔVo

; (4)

where ΔQ is obtained from the TPC analysis, while ΔVo is the amplitude of the TPV transient
under different illumination conditions.

The total charge carrier density under certain illumination conditions is given by

n ¼ 1

Aed

Z
Voc

0

c dV; (5)

where e is the elementary charge, and A and d are the area and thickness of the device.
The recombination order (λþ 1) is inferred from the slope of the log-log plot of the small

perturbation lifetime (t) versus the charge carrier density, which gives −λ as
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t ∝ n−λ; (6)

where n is the charge carrier concentration.
The recombination coefficient K is given by

kðnÞ ¼ −
nλ−1

ðλþ 1ÞτΔnonλo
; (7)

where τΔno , no, and λ are determined experimentally.
Figures 8(a) and 8(b) show TPV and TPC decay for different donor/acceptor (D/A) ratios of

poly2-octyldodecyloxy- benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7-bis(dithio-
phen-2-yl)-benzo[c][1,2,5]-thiadiazole (PBDT-ABT-2/PCBM) BHJ solar cells. The TPV curves
show that carrier recombination time or carrier lifetime (tn) decreased with an increase in
acceptor concentration in conjugated polymer/fullerene BHJ solar cells. This is similar to
the previous results reported by Dennler et. al.75 All the device shows a shorter charge transport
time than the charge carrier lifetime.

The charge transport time is found to be ∼422 ns for PBDT-ABT-2:PCBM BHJ solar cells
with 1:1 D/A ratio. When the D/A ratio was changed from 1:1 to 1:2 and 1:0.5, the charge
transport time was increased to 707 and 1316 ns. This is due to the fact that the charge transport
time decreases with an increase in acceptor concentration as the percolation path along the
acceptor increases. Moreover, the isolation of the polymer phase might have occurred by
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Fig. 8 (a) Normalized transient photovoltage and (b) normalized transient photocurrent for varying
D/A ratio of PBDT-ABT-2/PCBM.

Adhikari et al.: Device and morphological engineering of organic solar cells for enhanced charge transport. . .

Journal of Photonics for Energy 057207-11 Vol. 5, 2015



increasing the D/A ratio from 1:1 to 1:2, resulting in a longer charge transport time. The charge
carrier lifetime calculated from the TPV decay curve is found to be longest for the 1:0.5 D/A
rat Conjugated polymers io. In addition, the 1:0.5 D/A ratio also has the longest charge transport
time compared to all other D/A ratios. From the above analysis, it can be concluded that the
diffusion length (Ln), which is proportional to

ffiffiffiffiffiffiffiffiffiffiffi
τn∕τd

p
, depends upon the charge transport time

and charge carrier lifetime.9 Therefore, the 1:1 D/A ratio has the longest diffusion length and
produces the highest performing device with a larger value for the short-circuit current density.
Hence, transient measurements can be used to optimize the D/A ratio, which was found to be 1:1
for PBDT-ABT-2:PCBM BHJ solar cells.

A similar study has also been performed in PDPP3T:PCBM solar cells to investigate the
effects of nanomorphology on charge transport with different additives and recombination
behaviors in BHJ solar cells (Fig. 9).17 It is found that the charge transport time for cells proc-
essed with CN and DIO additives is faster than those processed without additive and cells proc-
essed with ODT additive. The authors also preformed intensity-dependent transient analysis to
understand the dependence of charge carrier lifetime on charge carrier concentration.

Fig. 9 Normalized transient photocurrent decay of PDPP3T: PC60BM solar cells with different
additives.

Fig. 10 (a) Apparent bimolecular recombination order (λ) obtained by fitting charge carrier lifetime
versus charge carrier density of PDPP3T: PC60BM solar cells with linear functions.
(b) Dependence of bimolecular recombination coefficient on generated charge carrier density
of PDPP3T: PC60BM solar cells with varying intensity.
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The dependence of charge carrier lifetime with charge carrier concentration of PDPP3T:
PCBM solar cells with and without additives are shown in Fig. 10(a). The lifetime of the charge
carrier follows the power law with charge carrier density given by t ∝ n−λ. This shows that the
lifetime decreases with a higher charge carrier density. In addition, the slope (λ) obtained by
fitting at higher intensities is greater for pristine, DIO, and CN processed cells, than cells proc-
essed with ODTadditive. The slopes observed in Fig. 10 (a) (λ > 1) show that the recombination
coefficient [Fig. 10 (b)] is charge carrier density dependent with the presence of traps in the
bandgap and the trap density decreases with increasing crystallinity. In addition, the slope of
ODT processed cells is smallest, resulting in the lowest bimolecular recombination.

5 Conclusion

Conjugated polymer–fullerene derivative based composites tend to provide a lot of advantages in
terms of improvement in electronic property, stability, device engineering, and device perfor-
mance without affecting the flexibility and ease of processability in fabricating organic solar
cell devices. Morphological engineering can be done using solvent and solvent additives,
which leads to different nanoscale morphologies in organic PVs. Processing parameters also
play a major role in the evolution of different nanoscale morphologies, which has an effect
on the overall device performance. The film formation process (spray-coating, spin-coating,
and dip-coating) and post-treatment (UV ozone treatment and annealing) affect the physical
properties, such as molecular configuration, miscibility, lateral and vertical phase separation,
which changes the nanomorphology of the active layer. Transient photoconductivity measure-
ment can be used to optimize the D/A ratio, which is found to be 1:1 for copolymer (PBDT-
ABT-2):PCBM system. In addition, the recombination order and recombination coefficient pro-
vide insight on the understanding of the recombination that is dominant in prepared BHJ
solar cells.
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