1 November 2017 Experimental and computational fluid dynamics analysis of a photovoltaic/thermal system with active cooling using aluminum fins
Author Affiliations +
Abstract
Being the most widespread renewable energy generation system, photovoltaic (PV) systems face major problems, overheating and low overall conversion efficiency. The electrical efficiency of PV systems is adversely affected by significant increases in cell temperature upon exposure to solar irradiation. There have been several ways to remove excess heat and cool down the PV to maintain efficiency at fair levels. A hybrid photovoltaic/thermal system cooled by forced air circulation blown by a PV-powered fan was set up, and a rectangular control volume with cylindrical ends was built at the back of the PV panel where aluminum fins were placed in different arrangements and numbers. During the experiments, temperature and electrical output parameters were measured for three different air velocities (3.3, 3.9, and 4.5    m / s ) and two different fin numbers and arrangements (54 pcs shifted and 108 pcs inline) under a constant radiation value of 1350    W / m 2 . While the electrical efficiency of the panel was reduced by almost 50% and decreased from 12% to 6.8% without active cooling, at 4.5 - m / s air velocity and with 108 fins in inline arrangement, the electrical efficiency could be maintained at 11.5%. To compare and verify the experimental results, a heat transfer simulation model was developed with the ANSYS Fluent, and a good fit between the simulation and the test results was obtained.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Gökhan Ömeroğlu, "Experimental and computational fluid dynamics analysis of a photovoltaic/thermal system with active cooling using aluminum fins," Journal of Photonics for Energy 7(4), 045503 (1 November 2017). https://doi.org/10.1117/1.JPE.7.045503 . Submission: Received: 1 August 2017; Accepted: 9 October 2017
Received: 1 August 2017; Accepted: 9 October 2017; Published: 1 November 2017
JOURNAL ARTICLE
16 PAGES


SHARE
Back to Top