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Abstract. An increasing number of functional near-infrared spectroscopy (fNIRS) studies utilize a general linear
model (GLM) approach, which serves as a standard statistical method for functional magnetic resonance im-
aging (fMRI) data analysis. While fMRI solely measures the blood oxygen level dependent (BOLD) signal, fNIRS
measures the changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) signals at a temporal
resolution severalfold higher. This suggests the necessity of adjusting the temporal parameters of a GLM
for fNIRS signals. Thus, we devised a GLM-based method utilizing an adaptive hemodynamic response function
(HRF). We sought the optimum temporal parameters to best explain the observed time series data during verbal
fluency and naming tasks. The peak delay of the HRF was systematically changed to achieve the best-fit model
for the observed oxy- and deoxy-Hb time series data. The optimized peak delay showed different values for each
Hb signal and task. When the optimized peak delays were adopted, the deoxy-Hb data yielded comparable
activations with similar statistical power and spatial patterns to oxy-Hb data. The adaptive HRF method
could suitably explain the behaviors of both Hb parameters during tasks with the different cognitive loads during
a time course, and thus would serve as an objective method to fully utilize the temporal structures of all fNIRS
data. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.1.1.015004]

Keywords: cortical hemodynamics; optical topography; statistical analysis; regression analysis; diffuse optical imaging; statistical
parametric mapping.

Paper 14037R received Mar. 15, 2014; revised manuscript received May 29, 2014; accepted for publication Jun. 2, 2014; published
online Aug. 5, 2014.

1 Introduction
Functional near-infrared spectroscopy (fNIRS) offers a unique
position as a neuroimaging modality for assessing human brain
functions. In comparison to functional magnetic resonance im-
aging (fMRI), one obvious merit of fNIRS in its experimental
use is the high degree of flexibility: it requires only a compact
instrument installed in an ordinary environment, is less restric-
tive, and is tolerant of body motion. These merits enable a vari-
ety of motor, sensory, and cognitive tasks to be executed using
fNIRS.1–3 Moreover, fNIRS allows the acquisition of a wider
variety of parameters than does fMRI. While fMRI measures
blood oxygen level dependent (BOLD) signals mostly reflecting
deoxygenated hemoglobin (deoxy-Hb) concentration changes,
fNIRS can utilize both oxygenated (oxy-) and deoxy-Hb signals.
In addition, fNIRS enjoys higher temporal resolution than
fMRI: while the typical sampling rate of fMRI is on the order
of seconds, that of fNIRS is on the order of 100 ms for typical
measurements or of 10 ms for highly tuned settings.2

However, there remains debate over how to appropriately
extract cortical activation data from Hb timeline signals, and
a standardized method has yet to be established. Typically,
two methods are utilized in fNIRS studies. In a classical
approach, the functional data can be simply assessed by con-
trasting average data from the peak period against average data
from the baseline period. A contrast representing task-related

cortical activation may be extracted for a given subject,
which is further subjected to group analyses. In a single subject,
sets of baseline and task periods are statistically assessed using a
paired (or one-sample) t-test. This approach has been adopted
for both block and event-related designs.4,5

Alternatively, a general linear model (GLM) approach, which
has been established as a standard method for fMRI data analy-
sis, has also been applied to fNIRS studies using both event6 and
block-related designs.7 In typical GLM analyses, the functional
timeline of data is regressed to a hemodynamic response func-
tion (HRF) that mimics the actual hemodynamic response, mea-
sured as a BOLD signal in fMRI experiments.8,9 The GLM
describes data as a linear combination of an explanatory variable
and an error term. In group analyses, the GLM is used to pro-
duce a subject-specific contrast from beta-weight in regression
to the HRF, which is used for the second-level analyses. When
applied to single-subject analyses, the GLM can fully utilize the
temporal information for fNIRS Hb signals by increasing the
degree of freedom by severalfold to achieve greater statisti-
cal power.

GLM analyses of the fMRI data have been developed to
explain the timeline BOLD signal data observed. The crucial
part of the model function of a GLM is the boxcar function,
which reflects the temporal structures of the experimental para-
digm and is convolved with the canonical hemodynamic
response function consisting of the sequential combination of
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positive and negative gamma functions.9 In addition to the HRF,
its first and second derivatives (temporal and dispersion deriv-
atives), baseline and linear trends are usually adopted as regres-
sors in a GLM. In actual data analysis, it is the general practice
to use default settings for the temporal parameters such as peak
delays of the gamma functions as provided by data analysis tools
such as statistical parametric mapping (SPM).8,9

These parameters were first proposed by Boynton et al. to
empirically describe the observed BOLD signal in response
to the preceding neural activity.8 Although these temporal
parameters stand as the fundamental basis of GLM, little con-
sideration has been given to the validity of their selection.
Indeed, Boynton himself raised an alarm over the current prac-
tice of blindly using default settings for the temporal parameters
as provided by analysis tools without considering possible vari-
ability of hemodynamic response between brain regions and
task species.10 In order to take such variability into considera-
tion, some studies have modified HRF parameters to achieve a
better fitting of the model function to the observed data.11,12

Thus, the GLM approach to fNIRS data analysis has essen-
tially borrowed its basic framework from GLM used in typical
fMRI analyses. However, several important issues need to be
addressed when “localizing” fMRI-GLM to fNIRS data. Among
these, the temporal coherence of timeline data has been well
treated using a precoloring approach. Also, spatial inhomogene-
ity within multiple channel measurements has been resolved
using a tube formula. Together, these solutions have been
released to public domains as user-friendly toolboxes (NIRS-
SPM).13 Similarly, the fNIRS GLM analysis tools of HomER14

and fOSA7 have also been released. On the other hand, it has
been a common practice for GLM in fNIRS to adopt the tem-
poral parameters for the hemodynamic response functions used
in fMRI-GLM, which have been empirically optimized for ana-
lyzing BOLD timeline data.6,7,13,15 Since fNIRS deals with
hemodynamic responses of both oxy- and deoxy-Hb signals,
the temporal parameters for the fMRI BOLD signal may not
suitably explain the behaviors of those Hb signals. In fact,
canonical HRF being used as a predictor for both Hb signals
without accounting for differences in their behaviors and varia-
tions among individual subjects has been raised as a concern
regarding the GLM approach.16

In recent years, a few pioneering fNIRS studies have started
to adjust the temporal parameters of the HRF. Minagawa-Kawai
et al. explored the best-fit first peak delay values for both Hb
parameters in an auditory infant study and found that the
best fit was achieved at 2.8 s for oxy- and 3.4 s for deoxy-
Hb parameters, respectively.17 Both were shorter than the typical
peak delay in fMRI of 6 s. A functional map was created based
on the oxy-Hb parameter, and the relationship between the two
parameters has yet to be examined. Similarly, in a simultaneous
measurement using fNIRS and EEG, onset and peak delays for
Gaussian functions have been adopted for oxy-Hb signal, while
deoxy-Hb signal remains to be analyzed.18 Given this, there is
still the need to explore model functions suitable for examining
the temporal behaviors of oxy- and deoxy-Hb signals.

The most practical strategy would be to adopt the tuning of
the HRF temporal parameters, as has been done in fMRI analy-
ses, for both oxy- and deoxy-Hb signals. Given the higher
temporal resolution of fNIRS (subsecond order) than of
fMRI (second order), we would expect that the temporal char-
acteristics of the two hemoglobin signals could be well modeled
using the GLM approach.

In order to assess the task-induced temporal profiles of oxy-
and deoxy-Hb signals in fNIRS measurement, we adopted two
different language tasks in block design functional paradigms.
One was a verbal fluency task (VFT)19 and the other was a nam-
ing task (NMT).20 In a VFT, participants are requested to gen-
erate words according to a given rule. Typically, the words are
generated within a particular semantic category (e.g., fruits) to
form a category fluency task, or with a particular letter (e.g.,
E-words) to form a letter fluency task. In the NMT, a participant
performing a confrontation naming task is presented with a
series of pictures of objects one by one and required to name
each object presented. These two tasks appear to have similar
task structures consisting of a series of events, namely, object
naming or word generation. However, these events are executed
with different modes of cognitive process. While each event is
nearly independent of other events in the NMT, an event in the
VFT is cumulatively influenced by former events. When a word
is generated, the word is stored in the working memory not to be
repeated, the next word search excludes the already generated
words not increasing the difficulty. In other words, the cognitive
load remains constant during the NMT, whereas it gradually
increases during the VFT.

We assumed that such differences in task characteristics
would be reflected in the temporal profiles of hemodynamic
responses for oxy- and deoxy-Hb signals. The high temporal
resolution of fNIRS of 10 Hz is expected to be sensitive enough
to detect differences in the temporal profiles of Hb species
across different tasks in the order of seconds. Thus, we exam-
ined the behaviors of oxy- and deoxy-Hb signals during NMT
and VFT as measured by the fNIRS using an adaptive HRF
fit to the observations. In so doing, we explored which
approach best utilizes the full dimensions of fNIRS measure-
ments with multichannel, two-Hb, and high temporal resolu-
tion settings.

2 Methods

2.1 Experimental Procedures

Experimental data used in this study were obtained from our
previous studies19,20 and reanalyzed from different perspectives.
Here, we present the experimental procedures briefly.

Participants in the present studies were 30 right handed,
healthy volunteers (22 males; 8 females; average age ¼ 33.1

years; SD ¼ 10.8; range: 22–59 years) for the NMT and 28
right handed, healthy volunteers (21 males, 7 females, average
age ¼ 32.9 years, SD ¼ 10.7, range: 22–59 years) for the VFT.
Written informed consent was given by all participants and the
study was approved by the Jichi Medical University ethics
committee.

In the NMT, 53 line drawings were used as target stimuli.
The experimental tasks were to overtly name the objects
depicted in the line drawings. Each participant was presented
with a visual line drawing of an object and was asked to
name the object correctly as quickly as possible. The task para-
digm was a periodic block design with five alternating condi-
tions of rest (30 s) and experimental task (20 s).

In the VFT, participants were requested to overtly generate
the examples for five categories. The task paradigm was a peri-
odic block design with five alternating conditions of rest (30 s)
and experimental task (20 s).
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2.2 Experimental Settings of Functional Near-
Infrared Spectroscopy

We used the multichannel fNIRS optical topography system
ETG-4000 (Hitachi Medical Corporation, Kashiwa, Japan)
using two wavelengths of near-infrared light (695 and
830 nm). We analyzed the optical data based on the modified
Beer–Lambert law21 as previously described.22 This method
allowed us to calculate Hb signals reflecting the oxy- and
deoxy-Hb concentration changes, calculated in arbitrary units
(millimolar–millimeter).22 The sampling rate was set at 10 Hz.

We used two 3 by 5 multichannel probe holders, each con-
sisting of eight illuminating and seven detecting probes arranged
alternately at an interprobe distance of 3 cm, resulting in 44
channels (CH) across both sides of the head. Specific settings
were as previously described.20

After the fNIRS measurement, positions of illuminators and
detectors were subjected to probabilistic registration of fNIRS
channel positions to MNI space, and thereafter labeled for
macroanatomy.23

2.3 General Linear Model

In this study, time series oxy- and deoxy-Hb signal data were
analyzed using a GLM according to the following scheme.
The GLM model is given by

Y ¼ Xβ þ ε; (1)

where X ∈ RN×M denotes the design matrices (where M is the
number of data points during recording period, and N is the
number of β dimensions) and β ∈ RM×L (where L is the number
of measurement channels) is the corresponding response signal
strength for either oxy-Hb or deoxy-Hb parameters at the L’th
channel. An example of design matrix X is shown in Fig. 1.

Y ∈ RN×L represents the N-points time series in L channels,
and the components of the error matrix, Y ∈ RN×L, are indepen-
dent and normally distributed with mean 0 and variance σ2.24

Then, the least-squares estimation of β is given by

β ¼ X�Y; (2)

where X� is the pseudo-inverse matrix of X and given
by X� ¼ ðXTXÞ−1XT.

The regression coefficient β and the residual error ε are tested
with the one-sample t-test. The t values are calculated by

t ¼ cTβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2cTðXTXÞ−1c

p ; (3)

where c is the contrast vector, which determines the array ele-
ments of the regression coefficient β.

The precoloring method adjusted the degree of freedom.25

The degree of freedom v is given by the Satterthwaite correction
as follows:25

v ¼ traceðRVÞ2
traceðRVRVÞ ; (4)

where V ∈ RN×N denotes the intrinsic temporal correlation
matrix, and satisfies V ¼ KKT. K is the smoothing matrix.
R is the residual forming matrix, and it can be derived by
R ¼ I − XX�.

2.4 Hemodynamic Response Function

In fMRI studies, the hemodynamic response function is used to
model the changes of BOLD signal in response to neural activ-
ity.26 Boynton et al.8 suggested that the gamma function with
two free parameters could suitably represent hemodynamic
responses.8

Accordingly, the SPM software package has adopted HRF
based on the convolution of the boxcar function and the sum
of two gamma functions as the canonical HRF.12 We basically
modified this by adjusting the two gamma functions.

For the first level analyses, individual timeline data for the
oxy- and deoxy-Hb signals of each channel were analyzed
using the GLM with regression to the following HRF,
hðτp; tÞ, according to Friston et al.9

hðτp; tÞ ¼
tτpe−t

ðτpÞ!
−

tτpþτde−t

Aðτp þ τdÞ!
; (5)

where t stands for a point in the time series. The double-gamma
function is expressed with two components: the first term is the
positive gamma function indicating the response and the second
term indicates the undershoot. The parameter τp stands for the
first peak delay, which is basically set to 6 s in most fMRI stud-
ies, as this is the default setting of the SPM. τd is the second peak
delay which represents the delay of undershoot to response. To
avoid complication by adjusting two different parameters, we set
τd to 10 s as in typical fMRI studies. A is the amplitude ratio
between the first and second peaks and was set to 6 s as in typ-
ical fMRI studies.

Basis functions fðτp; tÞ were generated by convolving the
variable HRF hðτp; tÞ with a boxcar function NðtÞ. This is
referred to as canonical HRF (cHRF)

fðτp; tÞ ¼ hðτp; tÞ � N. (6)

In addition, the temporal and dispersion derivatives of the
cHRF were included to adjust the onset and dispersion of the
model functions to the individual’s hemodynamic response.
A bias component was also included.

The β-values (response amplitudes) and t-values of the oxy-
and deoxy-Hb signals were estimated for the cHRF predictor.
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Fig. 1 An example of a design matrix X. As described in Sec. 2.4, a
peak delay was set as τp ¼ 6 s. The row number indicates the number
of samples. The first, second, third, and fourth columns indicate the
canonical HRF f ðτp; tÞ, the derivatives, the second derivatives, and
the constant, respectively.
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These values were calculated using a least-squares model fitting
procedure maximizing model-to-data fitting.27,28

2.5 Data Preprocessing

All the measured individual timeline data were precolored with
filters.25 First, channel data containing unvaried periods exceed-
ing 10% or more of the timeline were excluded. Properly mea-
sured individual timeline data for the oxy- and deoxy-Hb signals
of each channel were preprocessed using the wavelet minimum
description length (Wavelet-MDL), detrending to remove global
trends due to breathing, cardiac movement, vasomotion and
other experimental errors,29 and by temporal smoothing with
convolution of the cHRF to the individual timeline data.30

2.6 Adaptive Hemodynamic Response Function
Approach

We tried to identify the optimal HRF that best models the
observed signal changes of oxy- and deoxy-Hb signals in differ-
ent cognitive tasks in a systematic way. The first peak delay, τp,
was set as a variable changing from 2 to 55 s to yield the optimal
HRF. To reduce complication, the second peak delay τd and
amplitude ratio A were set to the typical values (τd ¼ 10 s,
A ¼ 6). To examine the effects of τp, the average t-values
over 44 channels and 28 or 30 participants were calculated
for all τp ranges. For the deoxy-Hb signal data, in order to detect
negative responses, polarities of the canonical HRF functions
were reversed. The contrast vector c was set as c ¼
ð 1 0 0 0 Þ in order to perform a one-sample t-test against
baseline for the first component (adaptive HRF convolved with
boxcar function), whereas temporal, dispersion, and baseline
components were regressed out. The τp value that yielded
the maximum average t-value was determined as the optimal τp.

2.7 Group Analysis

For each signal and each task, group analysis was performed.
First, the value of τp was set to 6 s to represent the canonical
HRF typically used in fMRI studies. Second, it was set to the
optimal τp, which was derived as the maximal average t-value to
represent adaptive HRF. For these two τp values, the β-values of
the oxy- and deoxy-Hb signals were estimated for the canonical
and adaptive HRF predictors. The obtained β-values were sub-
jected to second-level random effects group analyses using one-
sample t-tests against zero. A p-value of less than 0.05 was con-
sidered significant. Family wise errors due to multichannel
measurement were corrected using the Bonferroni method
adopting stringent criteria. The analyzed data were registered
to the canonical cortical surface in MNI space.31

Correlation analysis using Pearson’s method was performed
on the t-values of 44 channels for oxy- and deoxy-Hb signals
averaged across subjects. In order to indicate actual correlation,
polarities of the canonical HRF functions were not reversed for
the deoxy-Hb signal data.

3 Results
The observed fNIRS timeline data, grand-averaged across all
participants and channels, and the optimized HRF for two sig-
nals and two tasks are shown in Fig. 2. The observed oxy-Hb
signal (red dashed lines) and deoxy-Hb signal (blue dashed
lines) timelines revealed different time responses, with the
deoxy-Hb signal being substantially delayed compared to the

oxy-Hb signal, and the decreasing of the values lasting beyond
the task periods.

There were differences between the time responses for the
NMT and the VTF. In both Hb signals, responses for the
VFT were more delayed than those for the NMT. These results
indicate that the time responses with fNIRS differ between each
signal and each task.

In search of the adaptive HRF that best represents the
observed oxy- and deoxy-Hb signal changes during NMT
and VFT, τp parameters were varied systematically. Average
t-values across all participants and all channels were calculated,
and various τp values for each signal and each task are indicated
by the color scale in Fig. 3. The t-values of oxy-Hb signal were
calculated based on the positive response and those of deoxy-Hb
signal were calculated based on the negative response, because
oxy- and deoxy-Hb signals have reverse polarities of a response
waveform. The optimal parameters of τp that maximized t-val-
ues were 6 s for the oxy-Hb signal in the NMT, 17 s for the
deoxy-Hb signal in the NMT, 10 s for the oxy-Hb signal in
the VFT, and 24 s for the deoxy-Hb signal in the VFT.

The results of the group analysis using 6 s as the τp value are
shown in Fig. 4. In the NMT, significant oxy-Hb signal increase
was found in several channels on both hemispheres with chan-
nels on the Broca area on the left hemisphere showing large t-
values. No activated channels were found for deoxy-Hb signal.
In the VFT, significant oxy-Hb signal increase was found in
three channels around the Broca area and one on the posterior
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Fig. 2 The observed timeline data for fNIRS and optimized HRF for
two signals and for two tasks. The upper two graphs are the data for
the NMT (naming task) and the lower two are those for the VFT (verbal
fluency task). The red dashed lines indicate the observed timelines for
oxy-Hb signal and the blue dashed lines indicate deoxy-Hb signal.
The observed timeline data are the grand-average data across all par-
ticipants and channels. The black solid lines indicate the HRFs, which
were calculated using the optimal τp values for each condition.
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part of the temporal lobe, all on the left hemisphere. No activated
channels were found for deoxy-Hb signal.

The results of the group analysis using the optimal τp value
are shown in Fig. 5. Note that the optimal τp value of 6 s for oxy-
Hb in the NMTwas the same as the conventional τp value. Peak
delay optimization resulted in a substantial increase in the num-
ber of activated channels for deoxy-Hb signal in the NMT: five
channels on the left hemisphere with strongly activated channels
on the Broca area and a weakly activated channel on the right
parietal lobe. Oxy-Hb results for the VFT were also greatly
affected by the peak delay optimization: the number of signifi-
cantly activated channels increased from 4 to 8 on the left hemi-
sphere with strongly activated channels being located on the
Broca area, and activated channels on the right hemisphere
increasing from 0 to 1. Interestingly, the peak delay optimization
most affected deoxy-Hb results for the VFT. Although no acti-
vated channels were found before the peak delay optimization,
the optimization led to a left-dominant bilateral activation pat-
tern with even more activated channels with higher t-values than
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Fig. 3 Average t -values across all participants and channels calcu-
lated for various τp values for each signal and each task are indicated
by the color scale. The optimal τp value, which gave the maximum t -
value, was 6 s for the oxy-Hb signal in the NMT (naming task), 17 s for
the deoxy-Hb signal in the NMT, 10 s for the oxy-Hb signal in the VFT
(verbal fluency task), and 24 s for the deoxy-Hb signal in the VFT.
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oxy-Hb results. Strongly activated channels were located on the
Broca area.

In order to assess the oxy- and deoxy-Hb activation pattern
results quantitatively, correlation analyses were performed for t-
values of all 44 channels for oxy- and deoxy-Hb data (Fig. 6). In
the conventional condition (τp ¼ 6), significant but weak pos-
itive correlations were found for oxy- and deoxy-Hb signals for
the NMT (r ¼ 0.34, p ¼ 0.02) and the VFT (r ¼ 0.22,
p ¼ 0.02). Note that these correlations were in opposite direc-
tions from those generally expected for oxy- and deoxy-Hb sig-
nals.32 On the other hand, in the optimized condition, significant
moderate inverse correlations were found for the NMT
(r ¼ –0.46, p ¼ 0.002) and significant strong inverse correla-
tions were found for the VFT (r ¼ 0.78, p ¼ 0.0001).
Directions of correlations were consistent with those expected
for oxy- and deoxy-Hb signals for typical activation.32

4 Discussion

4.1 Overview

In order to make the best use of the two different hemodynamic
parameters available in fNIRS, we assessed their behaviors

during two different cognitive tasks, NMT and VFT, which
are thought to involve different modes of cognitive process. By
applying the GLM with regression to the adaptive HRF, we
sought the optimum temporal parameters to best explain the
observed time series data. For the NMT, the best fit for oxy-
Hb signal was achieved at a peak delay value (τp) of 6 s,
which is compatible with τp in the conventional HRF used
with fMRI, whereas that for deoxy-Hb signal was 17 s. Use
of an adaptive HRF approach drastically improved deoxy-Hb
results to the degree that left-lateralized activation patterns,
especially at the Broca area, were clearly visible. Correlations
between oxy- and deoxy-Hb signals across channels shifted
from positive to significantly negative with a moderate correla-
tion coefficient.

On the other hand, for the VFT, the optimum τp values for
oxy- and deoxy-Hb signals were 10 s and 24 s, respectively, with
similar spatial activation patterns including the left Broca area.
Use of an adaptive HRF approach led to an increase of statistical
power for oxy-Hb signal data with left-lateralized activation
patterns oriented in the Broca area. Surprisingly, although the
conventional HRF approach failed to detect any activation
with deoxy-Hb signal, the adaptive HRF approach led to the
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Fig. 6 Correlation analyses for t -values between oxy-Hb and deoxy-Hb signals among 44 channels.
(a) Correlation analysis for the NMT using the peak delay (Oxy ·Deoxy: τp ¼ 6) for the typical condition.
(b) Correlation analysis for the VFT using the peak delay (Oxy ·Deoxy: τp ¼ 6) for the typical condition.
(c) Correlation analysis for the NMT using the optimal peak delay (Oxy: τp ¼ 6, Deoxy: τp ¼ 17).
(d) Correlation analysis for the VFT using the optimal peak delay (Oxy: τp ¼ 10, Deoxy: τp ¼ 24).
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observation of activation patterns similar to those of oxy-Hb
results with even higher sensitivity. Correlations between
oxy- and deoxy-Hb signals across channels shifted from positive
to significantly inverse with a large correlation coefficient. HRF
generated using these peak delay values was fairly consistent
with the time series waveform data averaged across subjects
(Fig. 6), suggesting that HRF was well adjusted to differences
in hemoglobin parameters and task species. While recent studies
adjusted the HRF parameters using visual inspection,33 we pro-
pose an adaptive HRF approach that systematically searches for
optimum peak delays, realizing an objective method free from
subjective data interpretation.

4.2 Variability between Oxy-Hb and Deoxy-Hb
Parameters

To date, only a few studies have dealt with temporal variability
in oxy- and deoxy-Hb parameters. In a previous study, we men-
tioned that the deoxy-Hb signal exhibited a waveform with sub-
stantially delayed peaks compared to oxy-Hb signal in overt and
covert naming tasks.20 This observation led us to develop the
current approach utilizing an adaptive HRF. In simultaneous
fNIRS and fMRI measurements, Huppert et al. demonstrated
that the peak latency of the deoxy-Hb signal was delayed com-
pared to that of the oxy-Hb signal,34 while it was fairly consis-
tent with that of the BOLD signal. Considering such variability
in hemodynamic responses, Hoshi raised a concern about
blindly adapting the GLM approach to fNIRS data and empha-
sized the necessity of taking hemodynamic variations into
account.16 Also, Cohen-Adad et al. argued that the use of a sin-
gle canonical HRF as a regressor for both hemoglobin param-
eters is inappropriate.35

Although they are not overtly referred to, the delayed deoxy-
Hb signal responses can be clearly detected in several oxy- and
deoxy-Hb waveform data published. For example, for a verbal
fluency task performed in a block design paradigm, the peak of
deoxy-Hb signal was substantially delayed, extending into the
rest period and failing to return to the basal level as the oxy-Hb
signal (Fig. 7 in Herrmann et al.36). In a letter fluency task last-
ing for 1 min, oxy-Hb signal peaked at 20 s, while deoxy-Hb
signal peaked at around the end of the task period (Fig. 1 in Suto
et al.37). In a tower of Hanoi task lasting for 1 min, the deoxy-Hb
peak was substantially delayed compared to the oxy-Hb peak
[Fig. 1(b) in Ikezawa et al.38]. As was the case in the current
study, all of these studies exhibited peak delays for the
deoxy-Hb signal, but to a different degree depending on task
species and experimental conditions.

From a different perspective, often it has been reported that
the deoxy-Hb signal tends to yield lower statistical power and
more localized activation than the oxy-Hb signal. For example,
in our former report using overt and covert naming tasks, we
focused our analyses on the oxy-Hb signal because the
deoxy-Hb signal failed to yield sufficient statistical power.
Herrmann et al. reported that a VFT led to bilateral, left-dom-
inant DLPFC activation with increases in oxy-Hb signal and
more localized decreases in deoxy-Hb signal.39 Interestingly,
when deoxy-Hb data in the current study were assessed
using the HRF for the peak delays of oxy-Hb signals, they
turned out to exhibit weaker activations in a more localized man-
ner than the oxy-Hb data. On the other hand, when the opti-
mized peak delays were adopted, the deoxy-Hb data yielded
comparable activations with similar statistical power and spatial
patterns as the oxy-Hb data. These results clearly demonstrate
that the use of mal-optimized HRF for the deoxy-Hb data can
lead to false negativity. One often finds fNIRS studies exploring
both hemoglobin parameters with the same analyses but report-
ing sole use of oxy-Hb signal due to a failure to detect activation
in the deoxy-Hb parameter. However, there is the possibility that
such cases may be attributed to insufficient consideration of
peak delays in the deoxy-Hb signal.

Moreover, a falsely interpreted peak delay for the deoxy-Hb
signal affects not only the GLMwith regression to HRF, but also
averaging data over a certain time period. For example, in aver-
aged waveform data across subjects (Fig. 2), the deoxy-Hb sig-
nal peaked during the rest period, and did not reach the basal
level even at the end of the rest period. When rest periods
are this short, the changes of deoxy-Hb signal from a previous
task round are carried over to the next, and, in extreme cases,
may result in an apparent deoxy-Hb signal increase during a task
period, so that the activation detected may be false activation.

The current study explored the optimized peak delays for
each hemoglobin parameter. As a result, t-values for the
deoxy-Hb data in the language-related area were larger than
those for oxy-Hb data. Thus, it is possible that when HRF is
optimized for peak delay values, the power of deoxy-Hb data
can sometimes exceed that of oxy-Hb data.

4.3 Physiology Underlying Variability of Hemoglobin
Species

A general consensus has yet to be established regarding physio-
logical events underlying different behaviors of oxy- and deoxy-
Hb signals. Generally, oxy-Hb is thought to replenish oxygen
that has been consumed for regional neuronal activity. Upon
a regional increase of neuronal activity, cerebral arteries are
elongated due to neurovascular coupling. This leads to an
increased blood flow and volume, which washes out deoxy-
Hb.40 Consequently, increased oxy-Hb signal and decreased
deoxy-Hb signal inversely correlate to one another.32 Since
oxy-Hb is diamagnetic, while deoxy-Hb is paramagnetic, the
hemodynamic changes triggered by neuronal activity are
reflected in changes of BOLD signal in the fMRI.40 Thus,
with fMRI, one does not have to deal with two Hb species
but solely with the BOLD signal that compositely reflects the
changes in Hb signals. Since the sampling rate of the fMRI
is on the order of seconds, the temporal structure of the
BOLD signal is also simpler than that of fNIRS.

However, a high temporal resolution with a general sampling
rate on the subsecond order and separability of Hb species inevi-
tably pose, to fNIRS, the issue of different behaviors of Hb
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species. A study using imaging spectroscopy of the intrinsic sig-
nal of a cat cortex revealed that neural activity first evokes a
slight increase of the deoxy-Hb component peaking at 2 s.
This was followed by a decrease of the deoxy-Hb component
peaking at 7 s with an amplitude threefold larger than the initial
deoxy-Hb signal increase. On the other hand, the oxy-Hb com-
ponent was twofold larger than the second deoxy-Hb peak and
peaked at 5 s.41 The first deoxy-Hb peak was interpreted as rep-
resenting increased aerobic metabolism for localized neuronal
activity. This observation suggests that a second physiological
event immediately compensated for the initial oxy-Hb decrease.
Kuschinsky and Paulson suggested that a fast and highly local-
ized blood volume and flow redistribution in the capillaries may
account for this cancellation.42 The oxygen consumption was
compensated for with a rapid increase of highly localized
blood volume and flow in the capillaries, which contributes
to the small decrease of deoxy-Hb and small increase of oxy-
Hb signals. Finally, a large activity-dependent increase of
blood volume and flow to the tissue causes a delayed and global
increase of oxy-Hb concentration and decrease of deoxy-Hb
concentration.43–45

According to these theories, a more delayed peak of deoxy-
Hb than oxy-Hb signals is interpreted as a composite effect of
the initial deoxy-Hb signal increase and later decrease.
However, this inherently leads to further spatial and temporal
variability in degrees of peak delay. First, the initial deoxy-
Hb signal increase is localized while the later component is
more global; the delay is expected to be longer for activation
focus than other areas. Second, the initial deoxy-Hb signal
increase is dependent on local capillary distribution, and the
ratio of initial increase and later decrease of deoxy-Hb signal
is difficult to predict. Further studies are necessary to understand
the detailed mechanism of spatial and temporal variability of
hemoglobin parameters. Meanwhile, the adaptive HRF method
is expected to provide a practical solution for adjusting to
physiological variabilities inherent to deoxy-Hb signal.

4.4 Variability among Task Species

We also detected task-related variability of peak delay: for the
oxy-Hb signal, τp was 6 s in the NMT but 10 s in the VFT. Peak
delay was further elongated for the deoxy-Hb signal: τp was 17 s
in the NMTand 24 s in the VFT. The optimum peak delay of the
oxy-Hb signal with a τp value of 6 s in the NMT corresponded
well to the peak delay value predominantly used in the fMRI
studies, which is also the default setting of the SPM.8,9 The
NMT involves the presentation of stimuli at a constant interval
during the task period, but presented stimuli are independent of
one another. Since each stimulus can be regarded as an indepen-
dent event, the cognitive load should be similar throughout a
task period. In other words, the task periods in a block design
paradigm can be interpreted as repeated events. Thus, the peak
delay with a τp value of 6 s for the oxy-Hb signal and slight
delay by several seconds for the deoxy-Hb signal seems
reasonable.

On the other hand, peak delay for the VFT was much larger
for both Hb species. This seems relevant considering the cog-
nitive nature of a VFT, where a generated word affects the gen-
eration of the next word in a cumulative way. During the task
periods, participants try to produce words that they have not yet
generated. First, to realize this rule, they have to keep a list of
generated words in their working memory. Consequently, the
working memory load would gradually increase as the task

progresses till the end of each task period. Second, for each
block, the word search would become increasingly difficult as
the task period progresses, and the increased cognitive load may
evoke greater activation as the task progresses. As demonstrated
above, the adaptive HRF method could explain the behaviors of
oxy- and deoxy-Hb signals during a task with an increasing
cognitive load, and thus serves as an objective method to
fully utilize the temporal structures of fNIRS data for both
Hb parameters.

4.5 Limitations

The large differences in peak delay for task and hemoglobin spe-
cies cannot be fully explained by the current model. There are
many parameters in the basis function, which is made up by
convolving a boxcar function and the HRF. Ideally, each param-
eter should be optimized to reflect the hemodynamic events
underlying different cognitive tasks. To avoid complication,
we chose to begin by optimizing one parameter, τp, which rep-
resents peak delay. Adjusting the peak delay could lead to good
modeling of oxy- and deoxy-Hb data for different cognitive
tasks. However, this does not necessarily perfectly reflect the
physiological events that actually occur. For example, the sec-
ond peak delay (τd) and amplitude ratio (A) may be optimized to
better explain different behaviors of Hb parameters. On the other
hand, the task differences may be better explained by modifying
the boxcar function. The choice of a boxcar function implies that
the cognitive load remains unchanged throughout the task
period, but this may not reflect the reality of the conditions.
Alternative functions, such as a linear or nonlinear increment
model, to adjust the boxcar function would be preferable, but
such alternative functions should be based on neural or physio-
logical mechanisms underlying the changes in the cognitive
load. This could be a future research focus.

We also have to note that the current study was performed in
a retrospective manner, and thus the experimental design was
not optimized to address task differences: VFT and NMT
were performed by different groups of subjects. It would be
preferable for the same subject group to undergo both VFT
and NMT in an alternating manner to exclude any possible fac-
tors attributed to group differences. Further investigation
employing a within-subject design is necessary to address
this issue.

5 Conclusion
To conclude, we proposed a GLMwith regression to an adaptive
HRF, an objective statistical method to make the best use of the
temporal resolution and variety of hemoglobin sources in
fNIRS. We revealed that the adaptive HRF approach can
increase statistical power by incorporating variability incorpo-
rating hemoglobin and task species into the model, while the
conventional approach with canonical HRF may lead to low
statistical power and false negativity. This is especially effective
for tasks with increasing cognitive loads such as a VFT. The
adaptive HRF approach increases sensitivity for the detection
of deoxy-Hb parameters, and thus facilitates the use of the
deoxy-Hb signal in experimental and clinical situations.
However, we have to note the importance of further character-
izing the physiological mechanisms underlying the different
temporal structures of the two Hb signals. Also, generalizability
of the use of the adaptive HRF approach should be explored for
various tasks. Despite these limitations, the GLM with regres-
sion to an adaptive HRF has potential as a useful method to fully
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utilize the temporal information of oxy- and deoxy-Hb signals,
and thus extends the applicability of fNIRS neuroimaging.

The adaptive HRF tools described in this study are available
through our website (http://brain-lab.jp).
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