Open Access
29 May 2014 Single-cell imaging tools for brain energy metabolism: a review
Alejandro San Martín, Tamara Sotelo-Hitschfeld, Rodrigo Lerchundi, Ignacio Fernández-Moncada, Sebastian Ceballo, Rocío Valdebenito, Felipe Baeza-Lehnert, Karin Alegría, Yasna Contreras-Baeza, Pamela Garrido-Gerter, Ignacio Romero-Gómez, L. Felipe Barros
Author Affiliations +
Abstract
Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Alejandro San Martín, Tamara Sotelo-Hitschfeld, Rodrigo Lerchundi, Ignacio Fernández-Moncada, Sebastian Ceballo, Rocío Valdebenito, Felipe Baeza-Lehnert, Karin Alegría, Yasna Contreras-Baeza, Pamela Garrido-Gerter, Ignacio Romero-Gómez, and L. Felipe Barros "Single-cell imaging tools for brain energy metabolism: a review," Neurophotonics 1(1), 011004 (29 May 2014). https://doi.org/10.1117/1.NPh.1.1.011004
Published: 29 May 2014
Lens.org Logo
CITATIONS
Cited by 52 scholarly publications and 1 patent.
Advertisement
Advertisement
KEYWORDS
Mode conditioning cables

Brain

Glucose

Sensors

Nanosensors

Acquisition tracking and pointing

Neuroimaging

Back to Top