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Abstract. Functional near-infrared spectroscopy (fNIRS) is a relatively low-cost, portable, noninvasive neuro-
imaging technique for measuring task-evoked hemodynamic changes in the brain. Because fNIRS can be
applied to a wide range of populations, such as children or infants, and under a variety of study conditions,
including those involving physical movement, gait, or balance, fNIRS data are often confounded by motion
artifacts. Furthermore, the high sampling rate of fNIRS leads to high temporal autocorrelation due to systemic
physiology. These two factors can reduce the sensitivity and specificity of detecting hemodynamic changes.
In a previous work, we showed that these factors could be mitigated by autoregressive-based prewhitening
followed by the application of an iterative reweighted least squares algorithm offline. This current work extends
these same ideas to real-time analysis of brain signals by modifying the linear Kalman filter, resulting in an
algorithm for online estimation that is robust to systemic physiology and motion artifacts. We evaluated the per-
formance of the proposed method via simulations of evoked hemodynamics that were added to experimental
resting-state data, which provided realistic fNIRS noise. Last, we applied the method post hoc to data from
a standing balance task. Overall, the new method showed good agreement with the analogous offline algorithm,
in which both methods outperformed ordinary least squares methods. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.NPh.3.3.031410]
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1 Introduction
Near-infrared spectroscopy (NIRS) is a noninvasive technique
that can monitor changes in optical absorption due to cerebral
blood to detect evoked brain activity.1 Measurements are made
by an array of light sources and detectors that are coupled to the
scalp through fiber optics, in a head cap worn by the subject, that
are connected to the NIRS instrument. Spatially overlapping
measurements that are made at multiple wavelengths within
the optical window (650 to 900 nm) can allow for spectroscopic
estimation of both oxyhemoglobin (HbO2) and deoxyhemoglo-
bin (Hb) via the modified Beer–Lambert law.2

During a task, regional changes in blood flow and oxygen
consumption in the brain alter hemoglobin levels, causing
changes in the optical absorption measured by the light source
to detector pairs that traverse this brain region. The nature of
these evoked changes in NIRS have been shown to be related
to the blood oxygen level dependent (BOLD) signal of func-
tional magnetic resonance imaging (fMRI).3 Compared to fMRI,
functional NIRS (fNIRS) offers lower spatial resolution but can
be recorded at a much higher temporal resolution (>10 Hz).
This characteristic makes fNIRS suitable for studying the tem-
poral characteristics of the hemodynamic signal. Furthermore,
fNIRS is nonrestraining, making it suitable for infants and
small children and for various tasks, such as walking,4,5 bal-
ance,6–8 and social interaction,9 where fMRI is not practical.

Due to the portability and high sample rate of fNIRS mea-
surements, several researchers have previously explored the use
of fNIRS in real-time assessments of brain activity,10–17 biofeed-
back,18 and brain–computer interfacing applications.15,16,19–24

These real-time applications, however, must contend with
noise and artifacts often contained within the NIRS data. In par-
ticular, the two major sources of confounding noise that affect
the analysis and interpretation of fNIRS signals are serially
correlated errors due to systemic physiology, such as cardiac,
respiratory, and low-frequency Mayer waves (related to blood
pressure regulation), and motion artifacts due to the movement
or slippage of the head cap. While several approaches to offline
correction of motion25–28 and physiological noise29–31 have been
proposed, for real-time imaging, these corrections must be both
automated and quickly implemented to keep up with the high
sample rates of fNIRS systems. In addition, real-time correction
methods need to be forward directed, meaning that they need to
offer corrections using only past history data points. In contrast,
many of the motion correction methods, such as wavelet or
spline interpolation models,26,28 use data information from both
before and after the artifact for correction and thus only offer
retrospective corrections.

Kalman estimation32 is an iterative method, which uses an
underlying Markov process to make updates in the estimation
of an underlying state (e.g., brain activity) based on a weighting
of the past history of state estimates and the currently measured
data. In this way, a Kalman estimator reports an estimate of the
state (brain) for every sample point based on the data collected
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up to that point. Since the Kalman estimator algorithm is fast
and forward directed, this approach has previously been used
in real-time brain imaging.14

In this study, we extended the ideas of Barker et al.27 to
develop a real-time adaptive algorithm based on the linear
Kalman filter, which allows estimation of brain activity using sim-
ilar autoregressive (AR)-based prewhitening and robust regres-
sion concepts. AR prewhitening is a method to reduce the
influence of structured noise such as errors due to slow drift
or physiology, which have specific frequency content (termed col-
ored noise) and are therefore not statistically random. Likewise,
robust regression is a mathematical method to reduce the effect of
statistical outliers, which involves an iterative process of model
estimation and detection of data samples which are statistical out-
liers. As demonstrated by Barker et al.,27 physiological noise in
fNIRS data results in serially correlated noise, which violates the
assumptions of an uncorrelated, independent identically distrib-
uted model error in the fit of a general linear model (GLM). If
uncorrected, these nonspherical errors can result in an inaccurate
control of type I error (false positives) and reduced performance
of the GLM estimator. In addition, fNIRS errors often exhibit het-
eroscedasticity due to motion artifacts. Heteroscedasticity refers
to noise that does not arise from a single uniform distribution. In
the case of fNIRS, motion artifacts often have very different stat-
istical properties (e.g., higher variance) compared to other back-
ground fluctuations. Motion artifacts often appear as statistical
outliers since these errors are often much larger but less frequent
and randomly occurring (nonergodic) compared to other sources
of noise in the data. Thus, fNIRS data containing motion artifacts
often result in a nonuniform noise distribution with outliers and a
heavy-tailed noise distribution (reviewed in Ref. 33). Barker
et al.27 showed that prewhitening to remove serially correlated
errors and robust regression to deal with heteroscedasticity of
the motion artifacts was effective in improving GLM estimation
in fNIRS data. This was termed the autoregressive, iterative
robust least-squares model (AR-IRLS).

This original Barker et al. work used an offline and iterative
approach to estimate the prewhitening and robust weighting
functions. In this current work, we describe modifications to
this model to allow estimation using a Kalman estimator. In
this work, we will first describe the modifications to the AR-
IRLS model to allow estimation using the Kalman procedure.
As will be described in Sec. 2, a Kalman estimator uses an
effective tuning parameter (the state process noise, Q), which
controls the dynamics of the state estimation between a highly
dynamic state (highQ) driven by per sample measurement infor-
mation and a convergent model (low Q) in which the state esti-
mates converge onto the solution of the static (offline) model.
While the former version of the Kalman filter is more appropri-
ate for adaptive and dynamic assessments of real-time brain im-
aging, this work will focus on the latter convergent limit of this
model where the performance of this approach will be compared
to the offline AR-IRLS model for validation. In this low-Q limit,
we will demonstrate the convergence of the real-time Kalman
estimator to the offline model in both simulation and experimen-
tal data sets. Thus, our approach can provide an online cumu-
lative estimate of brain activity. This provides an estimate of the
brain activity based on the weighted average of all measure-
ments up to the current sample and builds up a picture of the
task-related activation over time, allowing the potential for
real-time feedback. Last, experimental data from an upright
balance and cognitive reaction-time task will be demonstrated

as an application of this model to fNIRS data containing motion
artifacts.

2 Methods

2.1 Autoregressive, Iterative Robust Least-Squares
Model Approach

Functional NIRS brain imaging is based on the statistical com-
parison of the change in optical signals between two conditions,
which are often the performance of a task versus baseline or
the performance of two different tasks. A common approach to
analyzing fNIRS data implements a GLM given by

EQ-TARGET;temp:intralink-;e001;326;617Y ¼ X � β þ ε; (1)

where Y is a vector containing the fNIRS time-series measure-
ment, X is the design matrix with each column containing
a regressor, β is a vector of parameters to be estimated, and
ε is the residual error. The contents of design matrix X will
vary depending on the desired model to be estimated. One
approach that is commonly used is to first create a stimulus
matrix containing a binary mask that marks the presence of a
task. The stimulus matrix is then convolved with a canonical
hemodynamic response function to provide a predicted hemo-
dynamic signal for each stimulus. Thus, the design matrix
encodes a hypothesis based on the expected hemodynamic
response. The magnitude of the response to each stimulus con-
dition is then given by the estimated coefficients β and allows
statistical testing of the predicted response. Another approach
uses a finite impulse response (FIR) basis set, in which the
onset of a task and a predetermined number of lags are marked
by delta functions or mini-boxcars. The resulting coefficients in
β give the hemodynamic response function as a time series. In
either case, often additional nuisance regressors are included in
the design matrix, such as discrete cosine or polynomial terms to
model baseline drift, short distance measurements, or physio-
logical measurements.

The error term ε in Eq. (1) captures the difference between
the model and the actual data and typically contains physiologi-
cal noise and potentially motion artifacts. In ordinary least-
squares estimation, ε is assumed to be a zero-mean, independent
and identically distributed (iid.) random variable. However,
this assumption is violated by the presence of motion and
serial correlations due to physiological noise in fNIRS data.
Physiological noise due to cardiac, respiratory, and blood pres-
sure fluctuations is highly colored containing specific frequency
structures and is therefore not white iid. The presence of these
errors can lead to high false discovery rates (FDRs) if uncor-
rected in the GLM. Barker et al.27 proposed a prewhitening
method based on an AR filter to remove this noise color and
correct these errors in the GLM.

In addition to colored noise (serial correlations), noise in
fNIRS measurements also demonstrates heteroscedasticity
due to motion artifacts. This means that the noise does not
come from a uniform distribution and is a violation of the
assumptions in the standard GLM statistical model. Both before
and after prewhitening, motion artifacts often give rise to
a heavy-tailed noise distribution where the noise associated
with such artifacts is often much larger than the noise distribu-
tion due to other sources. Robust regression34 was proposed
to deal with these motion-associated outliers. The reader is
directed to Ref. 27 for full details on the offline version of
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this model, which included simulation and experimental com-
parisons of the AR-IRLS and standard GLM models.

In brief, based on the work in Ref. 27, the GLM model in
Eq. (1) is prewhitened by multiplying both sides of the expres-
sion by a linear whitening filter F, represented in matrix notation
as

EQ-TARGET;temp:intralink-;e002;63;686F � Y ¼ F � X � β þ εF; (2)

where F is a convolution matrix that performs column-wise FIR
filtering based on an AR model of the error terms. The new
residual errors εF are decorrelated but still contain outliers
due to motion. To deal with motion artifacts, Eq. (2) is solved
via iterative reweighted least squares (IRLS) estimation,34 which
again multiplies the left and right sides of the expression by
a diagonal weighting matrix:

EQ-TARGET;temp:intralink-;e003;63;578W � F � Y ¼ W � F � X � β þ εFW; (3)

whereW is a diagonal matrix containing weights determined by
an appropriate weighting function, such as Tukey’s bisquare
function.35 The weight matrix, which approaches zero in the
limit that the corresponding noise term is an extreme outlier,
down-weights the contributions of outliers toward the estimate
of β.

In the offline version of this model, described in Ref. 27, the
AR-IRLS algorithm is initialized with an ordinary least squares
(OLS) fit of the model [i.e., unweighted ðW ¼ 1Þ∕uncorrected
(F ¼ 1) version]. Each iteration of the algorithm then proceeds
as follows: (1) estimate an optimal AR model based on residual
error, (2) calculate the whitened matrix F, and (3) perform
robust regression on the whitened model [Eq (2)]. However,
since this model uses multiple iteration steps, it must be modi-
fied in order to be used in real time.

2.2 Linear Kalman Estimator

A Kalman estimator32 is a recursive linear estimator that solves
the hierarchical linear model.

State Update Model

EQ-TARGET;temp:intralink-;e004;63;315βftg ¼ Aftg � βft−1g þ Bftg � uftg þ νftg: (4)

Observation Model

EQ-TARGET;temp:intralink-;e005;63;269Yftg ¼ Xftg � βftg þ εftg; (5)

where the noise terms are defined as

EQ-TARGET;temp:intralink-;e006;63;226νftg ∈ Nð0; QÞ; (6)

EQ-TARGET;temp:intralink-;e007;63;196εftg ∈ Nð0; RÞ: (7)

The first expression [state update model; Eq. (4)] defines the
predicted update of the model’s state (β) at the current time point
(denoted by the subscript ftg). This update is based on a tran-
sition matrix (Aftg) that multiplies the estimate of this state at
the last time point (βft−1g) plus drive from an external input
(Bftg · uftg) and an additive random noise term (υftg), which
is assumed to come from a zero-mean, normal distribution
with variance defined as Q [Eq. (6)]. The matrix A is the state
transition matrix and predicts the expected value of the state (x)

at the next time point based on its current value. A common
choice for this is an identity matrix, which implies that the
next estimate of the state is the same as its current value and
denotes an undirected random walk model. The second expres-
sion [observation model; Eq. (5)] describes the relation of the
underlying state to the measurements. The observation model
describes the expectation of the current measurement (Yftg)
based on the observation matrix (Xftg) and the current state esti-
mate (βftg) plus an additive noise term (εftg), which is also
assumed zero-mean and normally distributed [Eq. (7)]. Here
we have attempted to follow the same notation used in the
GLM model for the definitions of Y, X, β, and ε [Eqs. (1)–(3)].
The two covariance terms (Q and RÞ define the noise of the state
process and measurement, respectively.

The Kalman estimation procedure is typically divided into
two steps: (1) the prediction step and (2) the update step.
The prediction step is given by the expectation of Eq. (4) condi-
tional on the value of the state at the previous time instance,

EQ-TARGET;temp:intralink-;e008;326;551βftjt−1g ¼ Aftg � βft−1jt−1g þ Bftg � uftg; (8)

with the estimate of the covariance of the state given by

EQ-TARGET;temp:intralink-;e009;326;508Cftjt−1g ¼ Cft−1jt−1g þ Aftg �Q � AT
ftg; (9)

where C is the covariance matrix of β. Here the notation
ftjt − 1g denotes the quantity at time t given the measurements
up to time t − 1. Next, the predicted state updated from Eq. (8) is
compared to the current observations via Eq. (5). The prediction
error (rftg; termed the innovations in a Kalman model) between
the actual measurement and this prediction is given by

EQ-TARGET;temp:intralink-;e010;326;413rftg ¼ Xftg � βftjt−1g − Yftg: (10)

In the second step (update) of the linear Kalman filter, the
model is then updated based on maximizing the likelihood of
the model given the noise covariance of the measurement (R)
and state process (Q). The update step is thus given by

EQ-TARGET;temp:intralink-;e011;326;337Kftg ¼ Cftjt−1g � XT
ftg � ðXftg � Cftjt−1g � XT

ftg þ RftgÞ−1;
(11)

where Kftg is called the Kalman gain. The update of the state
and state-covariance is given by

EQ-TARGET;temp:intralink-;e012;326;267βftg ¼ βftjt−1g þ Kftg � ðXftg � βftjt−1g − YftgÞ; (12)

EQ-TARGET;temp:intralink-;e013;326;234Cftg ¼ Cftjt−1g − Kftg � Xftg � Cftjt−1g: (13)

2.3 Kalman Autoregressive, Iterative Robust
Least-Squares Model Functional Near-Infrared
Spectroscopy Model

In order to apply the Kalman estimator to the AR-IRLS model to
fNIRS data in real time, we used a dual-stage Kalman filtering
scheme as detailed in Fig. 1. In the first filter, the Kalman
estimation is performed as described in Eqs. (4)–(13), where
the measurements (Y) and observation matrix (X) denote the
weighted and prewhitened model described by Eq. (3) (e.g.,
YW ¼ W � F � Y). In the second filter, the AR filter coefficients
are updated, which define the whitening matrix F.
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Step 1: The input to the model is the fNIRS raw data (inten-
sity) for each source–detector pair. The raw intensity
data are converted to channel-wise estimates of oxy-
and deoxyhemoglobin by the modified Beer–Lambert
law in real time. These are given by

EQ-TARGET;temp:intralink-;e014;63;502Yftg
⇀ ¼ −E−1 � logðIftg

⇀ Þ; (14)

EQ-TARGET;temp:intralink-;e015;63;463Ei;j ¼ exti;λj � li � dpfi;λj ; (15)

where Yftg
⇀

is a vector of the channel-wise chromophore
concentrations, Iftg

⇀
is a vector of the raw data signals,

exti;j gives the extinction coefficient for the i’th chromo-
phore at a wavelength of λj, and li · dpfi;j gives the
source–detector distance and differential path length of
the i’th channel. In offline analysis, Eq. (14) would
typically have an additional term to normalize to the
baseline intensity [e.g., optical density ¼ − logðI∕I0Þ];
however, since the design matrix of the GLM model
necessarily includes a column of ones (DC term), to
remove the mean of the signal over time, this normali-
zation term is redundant and can be left off in the model.

Step 2: The states in the model (β) are the coefficients of the
GLM as defined in Eq. (1). Given the estimate of the
state at the previous time point (βft−1g), the prediction
of the state model is given by Eqs. (8) and (9). In
this study, the state transition matrix (Aftg) is assumed
to be an identity operator and constant over time. This is
equivalent to an isotropic random walk of the state. The
external input matrix and vector (Bftg and uftg) are set to
zero, indicating the assumption of no external driving
forces to the model. The prediction of the observation
error is then given by Eq. (10). In our formulation,
Xftg is the current value of the GLM design matrix.

Step 3: Given the current estimate of the residual error of the
model, a second Kalman estimation model is evoked to
update the estimate of the AR filter coefficients. The AR
whitening filter was introduced in Ref. 27 to model
serial correlations in the fNIRS noise due to physiologi-
cal noise. The residual error is modeled by the equation

EQ-TARGET;temp:intralink-;e016;63;105rftg ¼
XP
i¼1

αi;ftg � rft−ig þ ϵftg; (16)

EQ-TARGET;temp:intralink-;e017;326;546ϵftg ∈ Nð0; σ2Þ; (17)

in which αi;ftg are the set of AR coefficients estimated at
the t’th time point and εftg is normally distributed white
noise. P is the model order for the AR filter. In the off-
line version, P can be estimated using an information
criteria measure [e.g., Akaike information criterion or
Bayesian information criteria (BIC)], but in real-time
analysis, the model order was fixed at P ¼ 30, which
is generally ∼50% larger than we typically use in offline
analysis. In order to implement this in real time, in this
work, the AR coefficients are determined by a second
Kalman filter (filter 2 in Fig. 1), which receives rftg
as input and uses rft−1g to rft−Pg as predictors.
Equations (4)–(13) are then used to update the AR coef-
ficients in the second Kalman model. Similar to the first
Kalman model, the state update matrix (A) is identity
(e.g., a random walk model).

Step 4: The updated ARwhitening filter is applied to both the
measurements and design matrix according to Eq. (2):

EQ-TARGET;temp:intralink-;e018;326;332Yfftg ¼ Yftg −
XP
i¼1

αi;ftg � Yft−ig; (18)

EQ-TARGET;temp:intralink-;e019;326;287Xfftg ¼ Xftg −
XP
i¼1

αi;ftg � Xft−ig; (19)

which effectively is a convolution with an FIR filter. Note
that we have introduced an assumption that β varies suf-
ficiently slowly over P time steps, such that Eq. (18) is
valid. This assumption is justifiable given the relatively
slow dynamics of hemodynamic signals. The whitened
model now yields an estimate of the whitened prediction
error (innovation) term [e.g., the whitened version of
Eq. (10)]:

EQ-TARGET;temp:intralink-;e020;326;159rfftg ¼ Yfftg − Xfftg � βftjt−1g: (20)

Step 5: Since the whitened (uncorrelated) innovations
model [Eq. (20)] may still contain outliers (e.g.,
heavy-tailed noise) due to motion artifacts, a weighted
least-squares model is used analogous to the model
described in Eq. (3). The weighting function used in
this work is given by

Model
prediction

step

Model 
prediction

error

Whitened
prediction

error
Whitening Weighting

Model
update

step

AR Model
prediction

step

AR Model
update 

step

Step 1 New 
data poin t

Filter 1

Filter 2

Step 2 Step 3

Step 4

Step 5 Step 6

Fig. 1 Schematic of the adaptive estimator illustrating the flow of information between two linear Kalman
filters. Filter 1 estimates the model and passes the prediction error to filter 2, which estimates an AR
model and passes AR coefficients back to filter 1 for the modified update steps.

Neurophotonics 031410-4 Jul–Sep 2016 • Vol. 3(3)

Barker et al.: Correction of motion artifacts and serial correlations for real-time. . .



EQ-TARGET;temp:intralink-;e021;63;752W

�
rfftg
σftg

�
¼

8><
>:

1 −
�
rfftg
σftg·κ

�
2

��� rfftgσftg

��� < κ

0
��� rfftgσftg

��� ≥ κ
; (21)

which is simply the square root of Tukey’s bisquare
function35 and is the same model as that used in
Eqs. (4)–(7) from Ref. 27. The tuning constant κ is typ-
ically set to 4.685, which provides 95% efficiency of the
model in the presence of normally distributed errors.35

σftg is the standard deviation of the input rfftg at the t’th
time point. We chose to estimate the standard deviation
of the whitened model error using a recursive mean
absolute deviation estimator given by

EQ-TARGET;temp:intralink-;e022;63;598σftg ¼
t − 1

t
� σft−1g þ

1.253

t
� jσftgj; (22)

in which 1.253 is a proportionality constant relating the
standard deviation to the mean absolute deviation. Thus,
the final weighted and whitened prediction error and
model at time t are given by

EQ-TARGET;temp:intralink-;e023;63;513Ywftg ¼ W

�
rfftg
σftg

�
� Yfftg; (23)

EQ-TARGET;temp:intralink-;e024;63;468Xwftg ¼ W

�
rfftg
σftg

�
� Xfftg: (24)

Step 6: Finally, the weighted and whitened model used in
the update step [Eqs. (11)–(13)] of the Kalman model
is given by

EQ-TARGET;temp:intralink-;e025;63;394Kftg¼Cftjt−1g�XwT
ftg�ðXwftg�Cftjt−1g�XwT

ftgþσ2ftgÞ−1;
(25)

EQ-TARGET;temp:intralink-;e026;63;345βftg ¼ βftjt−1g þKftg � ðXwftg � βftjt−1g −YwftgÞ; (26)

EQ-TARGET;temp:intralink-;e027;63;317Cftg ¼ Cftjt−1g − Kftg � Xwftg � Cftjt−1g: (27)

These expressions then yield the update on the estimate of
the state (β) based on the Kalman implementation of the AR-
IRLS model. This estimate is then combined with the next
data sample, and steps 1 through 6 are repeated.

2.3.1 Initializing and tuning the Kalman model

A single Kalman filter contains a total of two tuning parameters
(R and Q) and two initialization parameters (Cft¼0g and βft¼0g)
for the initial values of the state covariance and state estimate,
respectively. In our model, the measurement covariance param-
eter R was replaced by the recursive mean absolute deviation
estimator in Eq. (22) and thus is empirically defined by the
data. This is the same noise model used in both Kalman filter
models. The process noise covariance (Q) defines the allowable
step-size in the random walk state update model. If Q is large,
then β may have large variations from one sample point to the
next. In this case, the Kalman gain [Kftg in Eqs. (11) and (25)]
will approach unity, and the estimates of the states will track
the innovations term (rftg) and minimize the error to the

measurements. In the case that Q is zero, the Kalman estimator
will converge onto the static estimate of the state and will
asymptotically approach the same solution as the offline analy-
sis model. For a value ofQ set between these limits, the Kalman
filter will allow some fluctuations in the state. This intermediate
tuning is appropriate for real-time tracking of variability of brain
activity, for example, in the case of brain–computer interfaces
[e.g., Eq. (14)].

In this current work, we have examined only the convergent
limit of the Kalman filter where Q ¼ 0 for both the GLM and
AR Kalman filters (e.g., filters 1 and 2). In particular, in theQ ¼
0 limit, the Kalman filter gain and state update [Eqs. (11)–(13)]
reduce to the Bayesian solution of the least-squares regression
problem under the assumptions of stationary, white, and inde-
pendent identically distributed noise and is given by

EQ-TARGET;temp:intralink-;e028;326;587β ¼ C · XT · ðX · C · XT þ RÞ−1; (28)

where C and R are the priors on the covariance of β and Y,
respectively, and have the same interpretations as used in the
Kalman filter context. Thus, our current implementation per-
forms an online update of the GLM model using the Kalman
AR-IRLS model, which approaches the offline (static) solution.
In the limit of stationary brain signals, the estimate of the offline
and Kalman approaches should be asymptotically comparable.
However, if there are nonstationaries in the brain signal, one
would expect the Kalman estimator to track these changes and
differ from the offline model. This is expected to be true even in
the Q ¼ 0 limit. In the Kalman model, the estimate of the state
(e.g., brain activity) at each sample point is thus the maximum
likelihood estimate of the state given all the data collected up
until that sample. Although a nonzero Q implementation,
which allows for trial-to-trial variations in the estimate of
brain activity, may be more interesting in the context of real-
time fNIRS imaging toward feedback or brain–computer inter-
faces, the Q ¼ 0 model provides a better means to validate this
approach by allowing direct comparison to the offline solution.

The initial values of the states (for both the GLM and AR
Kalman filters) were initialized to zero. This means that the ini-
tial several time points of the Kalman filter will differ from the
static solution until enough data points have been collected to
obtain a more precise estimate of the state. In particular, the
GLM coefficients will remain zero until after the first instance
of the task being performed in the data. In this work, the model
is reset to zero after each scan; however, an alternative approach
would be to use the last estimates from the previous scan to con-
tinue the model. Finally, the initial value of the state covariance
(C) in our Kalman filter will determine the rate of convergence
of the model onto the static solution (since in our modelQ ¼ 0).
In this work, we set the initial state covariance to be 100 μM2

(e.g., Cft¼0g ¼ 100 · I).

2.4 Simulation and Receiver Operating
Characteristic Curve Analysis

A resting state fNIRS data set that was acquired as part of a
larger study in adults (age 18 to 50, N ¼ 34) was used for sim-
ulation and evaluation of the proposed method’s performance.
For each subject, 5 min of resting state data were acquired
at 10 Hz sampling frequency. The probe consisted of 35
source–detector pairs with distances between 15 and 31 mm
(median ¼ 28 mm) and acquired at 690 and 830 nm over the
motor and somatosensory cortices.
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Simulations were performed by adding a simulated evoked
response to real noise from the resting state data (e.g., experi-
mental data recorded during 5 min of rest with no explicit
functional task). An evoked response was simulated for a task
consisting of a single event every 15 s for 20 trials. A stimulus
vector was generated for this task and convolved with a canoni-
cal hemodynamic response function and scaled based on con-
trast-to-noise ratio (CNR). We performed simulations at CNR
levels of 0.5, 1.0, and 2.0, in which CNR was defined as the
peak magnitude of the response divided by the standard
deviation of resting state data after applying a whitening filter.
For each set of simulations, data were generated as follows:
(1) choose a random channel of resting state data from the
pool of all HbO2 and Hb channels; (2) add a random delay
time before the start of the task periods; (3) add a simulated
evoked response to the resting state data if desired; and
(4) pass the data and design matrix to estimators for assessment
of estimated values and statistics. An equal number of simula-
tions were performed on channels with and without adding an
evoked response, such that exactly half of all simulations con-
tained a simulated evoked response.

As benchmarks for comparison, the simulated data were also
analyzed with two static offline methods: AR-IRLS (Ref. 27)
and OLS with AR(1) prewhitening. Comparison with OLS
allowed for testing of performance gains over typical OLS-
based estimators, and comparison with AR-IRLS allowed for
investigation of convergence with the analogous offline method.
To evaluate the performance of the estimators, receiver operat-
ing characteristic curves (ROCs) were generated using the
t-statistic output of the estimators, in which true positive rate
is plotted versus the false positive rate (FPR) as a function of
the t-statistic threshold for detection of an evoked hemodynamic
response. In addition, we compared estimated p values (p̂) with
actual FPRs. Last, we looked at sensitivity, specificity, and FPR
when using p̂ < 0.05 as the threshold for significance for acti-
vation. The simulations were repeated for CNR values of
0.5, 1.0, and 2.0. For estimation with the proposed adaptive
method, the process noise covariance Q was set to zero and
an ARðP ¼ 30Þ model was used.

2.5 Application to Experimental Data

We applied the proposed method to experimental data (N ¼ 9,
age 25 to 47 years) involving a choice reaction time (CRT) task
while standing on a fixed force platform or while on a swaying
force platform as a final demonstration of the proposed method.
The experiment was approved by the institutional review board
at the University of Pittsburgh, and all subjects provided written
informed consent.

The CRT task has been described in a number of previous
publications and is of particular interest as a dual-task model
to probe cognitive and balance related interactions. This task
has been previously used in a number of behavioral studies.36

Since this task involves standing, balancing, and movement,
this task was selected as an example to demonstrate the perfor-
mance of the proposed motion-correction methods.

In the CRT task, participants were standing and moving on a
force platform during the task as shown in Fig. 2. The task
involved presentation of an arrow, pointing in the left or right
direction, while it was displayed on either the left or right
side of the monitor. Subjects were given two response buttons
for the left and right hands and were asked to press the button
corresponding to the direction of the arrow. Thus, the task

consisted of both congruent (left pointing arrow on the left
side of the monitor) and incongruent (left pointing arrow on
the right side) displays. The paradigm included 10 blocks of
15 s of CRT task followed by 15 s of no task. During the
task blocks, new arrows were presented with random direction
and location immediately after responding to the previous stimu-
lus until 15 s had elapsed. Each subject performed the task once
while standing on a fixed platform and once while the platform
was pitching up and down in proportion to the participant’s ante-
rior–posterior body sway. Reaction time and accuracy for each
stimulus presented were recorded in addition to NIRS data.

The NIRS data were acquired at 10 Hz on a Techen CW6
system using four source positions (690 nm∕830 nm) and six
detector positions in a bilateral probe covering the frontal cortex.
The source–detector spacing was 3.2 cm, and the probe was
centered bilaterally around the 10 to 20 FpZ. The data were
then analyzed post hoc using the proposed adaptive method
and the offline AR-IRLS method for comparison. The subject
level results were used to perform channel-wise group-level
analysis via a mixed effects linear model with repeated measures
design.

3 Results

3.1 Simulation Results

An example of the simulated data (CNR ¼ 1.0) is shown in
Fig. 3. The top panel [Fig. 3(a)] shows a sample time course
from the set of experimentally measured resting state data
with the simulated evoked stimulus already added to it. Note
that the simulated response (which was of magnitude 4 μM
in this case) is barely visible on top of the data. Both systemic
fluctuations and several motion artifacts are visible in the data
trace. Figure 3(b) shows the resulting weight matrix [W;
Eq. (21)] estimated from this data trace using the adaptive
method. The weight function denotes the presence of noise out-
liers, and thus, when there are sharp changes in the time-series
data due to motion, the weight decreases accordingly. This
weight matrix is used in the robust regression algorithm to
reduce the effects of the heavy-tailed noise in the presence of
motion. The states (β) of the Kalman filter are shown in
Fig. 3(c) along with the true simulated value of the activity.

(a) (b) (c)

Congruent

Incongruent

Fig. 2 (a) The probe used for NIRS data acquisition (top and bottom)
from two different angles demonstrating typical probe placement.
(b) A subject performing a choice reaction time task while balancing
on swaying platform. (c) Example of the stimuli, showing incongruent
(top) and congruent (bottom) left-pointing arrows. Subjects were
asked to respond to the direction of the arrow.
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The estimate of β is necessarily zero (the initialized value) until
the first stimulus event at around 40 s and then slowly builds up
to the level of the true estimate as more data become available in
the model. The variations in the state are controlled in the
Kalman filter by initial estimate of the state covariance (C) and
the state process noise (Q), which in our model was set to zero
(Q ¼ 0). Under this limit, the state estimate is expected to
approach the value of the static (offline) solution. Note that if
Q was set to a higher number, this allows more temporal vari-
ability in the state and allows faster convergence of the model.
However, a high Q limit, which would then track the measure-
ments more closely by allowing a more volatile state, would not
guarantee to converge to the same solution as the offline (static)
model and thus prevent direct comparison of the offline and
online methods in this work. Figure 3(d) shows the estimate
of the t-statistic on the state (β), which follows directly from
the state and state-covariance terms in the Kalman filter
given in Eqs. (26) and (27). At first, the value of the state is
close to the initialization value (zero) with high uncertainty,
but over time, the t-statistic increases and converges to the off-
line limit as more data are acquired.

Figure 4 examines the convergent limit of the statistical esti-
mates of β for the Kalman, OLS, and our previous AR-IRLS
model. In these simulations, the AR model order (P) was varied
from 1 to 65 and fit over the same simulated data as previously
described using the Kalman, AR(P)-IRLS, and AR(P)-OLS
models. This simulation was repeated 1000 times. Figure 4(a)

shows the mean statistical effect of the estimate response at the
5 min mark (full data file) for the three models as a function of
the AR model order from the 1000 simulations. At low AR order
(P < 10), the Kalman model had the lowest performance, but
above P > 20, the model had similar performances (within
10% variations). For the Kalman model, only model orders
below P < 20 were statistically different (p < 0.05) from the
value obtained at order P ¼ 65. Thus, our selection of
P ¼ 30 seemed justified. In Figs. 4(b) and 4(c), the correlation
of the t-statistics for these three models is compared at
P ¼ 1;30, and 50. The best-fit lines of the comparison of the
AR-OLS and AR-IRLS models were R ¼ 0.68; 0.77, and
0.72 for P ¼ 1;30, and 50, respectively. The slope less than
unity indicates that the effect size of the OLS model tended
to be higher than the IRLS model. However, this comparison
only looks at the magnitude of the effect size, and our previous
work has also shown that the OLS model has a higher FDR. This
is examined in Sec. 3.2 and Fig. 5. The comparison
of the AR-IRLS and Kalman model had best-fit slopes of
R ¼ 1.24, 1.07, and 1.06. Here, a value greater than unity indi-
cates the AR-IRLS model had higher effect sizes on average
than the Kalman model. However, this was only significantly
different for the P ¼ 1 model (p < 1e − 7).

Simulations similar to the one shown in Fig. 3 were repeated
from the sample of 34 subjects’ resting state data to generate
ROCs to quantify the performance of the model. In Fig. 5,
we show the ROCs generated using the first 1 through 5 min
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Fig. 3 (a) An example of simulated fNIRS data from resting-state data and synthetic hemodynamic
response. (b) Weights calculated by the algorithm. Artifactual time points are down-weighted. (c) The
predicted evoked response (solid green) is shown over the simulated evoked response (dashed
red). (d) Evolution of the t -statistic over time. Note the difference in scale between (a) and (c). Data
are simulated at a contrast-to-noise level of 1:1.
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of data. Both the Kalman filter (solid black) and offline (dotted
black) models are shown. The two lines are virtually identical
and indistinguishable except for the 1-min window. The offline
analysis used the same 1 to 5 min block of data. Also shown is
the AR(1)-OLS regression model, which does not use robust
regression for comparison. In our previous work, we had already
shown that this OLS model was inferior to the robust regression
version of the model.27 In the top row, we show the sensitivity–
specificity curves for the models based on 1 to 5 min of data. Not
surprisingly, as the amount of data is increased, the area under
the curve (AUC) of the ROC plots increases and asymptotes
around 3 to 4 min. Figure 6 presents the comparison of these
AUC values in terms of the sensitivity and specificity of
these plots at p̂ < 0.05. The proposed adaptive method shows
a performance similar to the analogous offline AR-IRLS
method. Both of the methods showed increased performance
with increasing data length. These two methods show slight
divergence early on (using only 1 min of data) due to the

lead-in period of the Kalman estimator. Beyond 2 min, however,
the offline and online methods show nearly identical perfor-
mance. Both of these methods showed better performance than
the OLS method. In the lower row of Fig. 5, we show the
estimate of the FPR based on the t-statistic reported from the
models compared to the actual FPR from the ROC analysis.
In particular, in our previous work in Ref. 27, we had shown
that presence of serial correlations in the noise led to large
differences between the reported (p̂) and actual FDRs. An
ideal model would have the reported and actual rates equal
as indicated by a line at slope of one. In agreement with our
previous work, we found that prewhitening with the ARðpÞ
model produced the least biased estimates of the FDRs. The
adaptive (Kalman) and offline produced similar results with a
slight deviation using only the first minute of data. This is pre-
sumably due to the lead in time of the AR Kalman filter model
(filter #2 in Fig. 1). These values are also presented in Fig. 6(c)
at the expected p̂ < 0.05 threshhold. By definition, at a threshold

Fig. 4 The performance of the AR-IRLS, AR-OLS, and Kalman models was examined as a function of
the AR model order (P). 1000 simulations were generated at a CNR of 1.0 and estimated using the three
approaches at model orders from 1 to 65. (a) The average (and standard errors) of the 1000 simulations
at each AR model order. (b) and (c) Scatter plots of the individual results from the P ¼ 1; 30, and 50
models for the comparison of the AR-IRLS/AR-OLS and AR-IRLS/Kalman models, respectively. The
best-fit lines are also presented.
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Fig. 5 ROC curves are shown for 1, 2, 3, 4, and 5 min of data. The statistical performance proposed
adaptive method converted rapidly to the analogous offline AR-IRLSmethod. The top row shows the true
positive rate (TPR) plotted against FPR. The bottom row shows the FPR plotted versus the uncontrolled
estimate of the probability value (p̂). Data are simulated at a contrast-to-noise level of 1:1 as exemplified
in Fig. 3.
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of p̂ < 0.05, the FDR (FDR ¼ 1-specificity) is expected to be
5%. Deviations from this expected rate indicate uncontrolled
or overcontrolled type I errors in the model as detailed in
Ref. 33. In these results, at this threshold, the actual FDR of
the OLS model is under-reported with a value between FDR ¼
½0.1; 0.2�. This means that data reported using this offline OLS
model have about two to four times more false positives than
expected. The offline and Kalman ARðpÞ-IRLS models both
slightly over-reported FDRs, meaning that the results were
actually more significant than expected (e.g., the model slightly
overcorrects). This finding had also been reported in the original
paper by Barker et al.27

The results for the CNR ¼ 0.5, 1.0, and 2.0 simulations for
the Kalman ARðpÞ-IRLS model are additionally provided in
Table 1. The lower CNRð¼ 0.5Þ results had roughly half the
sensitivity at all five time windows compared to the CNR ¼ 1.0
data presented in Figs. 5 and 6. Likewise, the CNR ¼ 2.0 data

had about twice the sensitivity of the data. This was expected
based on the definition of the CNR. Note these three CNR levels
correspond to Cohen’s d values around 0.3, 0.7, and 1.4 per trial,
which are small, medium, and moderate effect sizes. In compari-
son, the experimental CRT data had a Cohen’s d of around d ¼
0.5 per trial for the most activated channels, which was slightly
lower than the CNR ¼ 1 simulations shown in Figs. 3–6.

3.2 Estimation of Dynamic States

In the simulations shown for Figs. 3–6, we examined the per-
formance of the Kalman estimate in the low-Q limit for estimat-
ing a static brain signal. We showed that this produced a
convergent solution to the offline analysis model but allowed
the additional benefit of an online cumulative estimate of the
brain activity that could be shown during actual data collection.
The alternative high-Q limit of a Kalman filter, in principle,
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Fig. 6 (a) Sensitivity, (b) specificity, and (c) FPR are shown for simulated data using p̂ < 0.05 as the
threshold for activation. These data are also presented as an ROC curve in Fig. 5 and were simulated
at a contrast-to-noise level of 1:1.

Table 1 Sensitivity, specificity, and FPR are shown for varying CNRs for the proposed algorithm using p̂ < 0.05 as the threshold for activation.
Specificity is equal to 1— FPR. Sensitivity is equal to the true positive rate. The offline results for the full 5 min of simulation from the OLS and AR-
IRLS models are also presented.

Kalman model AR-OLS AR-IRLS

1 min 2 min 3 min 4 min 5 min 5 min 5 min

Sensitivity | True positive rate

SNR ¼ 0.5 10.8% 28.4% 40.1% 49.3% 56.0% 21.2% 43.5%

SNR ¼ 1.0 29.5% 57.7% 71.6% 79.4% 84.0% 40.4% 80.2%

SNR ¼ 2.0 57.9% 82.6% 91.7% 95.1% 96.5% 65.5% 94.5%

Specificity

SNR ¼ 0.5 97.6% 97.9% 97.4% 97.3% 97.2% 91.3% 98.3%

SNR ¼ 1.0 97.6% 97.7% 97.3% 97.3% 97.1% 88.2% 98.3%

SNR ¼ 2.0 97.5% 97.7% 97.3% 97.3% 97.2% 88.4% 98.5%

False positive rate

SNR ¼ 0.5 2.4% 2.1% 2.6% 2.7% 2.8% 8.7% 1.7%

SNR ¼ 1.0 2.5% 2.3% 2.7% 2.7% 2.9% 11.8% 1.7%

SNR ¼ 2.0 2.5% 2.3% 2.7% 2.7% 2.8% 11.6% 1.5%
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allows estimation of time-varying and dynamic states (brain
activity) and could be used in brain–computer interfaces
based on Kalman estimators (e.g., Ref. 14). To examine the per-
formance of our model under these limits, we performed an
additional set of simulations where trial-by-trial variability in
the hemodynamic response was introduced. Figure 7(a) shows
an example of such simulations. For each simulation, the mag-
nitude of the evoked response for each trial was given as
β0 � Δβ, where Δβ ∈ Nð0; QBÞ and β0 is defined to give a spe-
cific average contrast-to-noise value of 1.0 for each data file.
Figure 7(b) shows the simulated response at QB ¼ 10 μM2,
which is a large inter-trial variability and displays both changes
in amplitude and sign reversals of the response (red line). The
recovered estimates from the Kalman filter model for this par-
ticular simulation is shown at Q ¼ 0 μM2 (black dotted line)
and Q ¼ 50 μM2 (black solid line) in Fig. 7(b). As can be
seen, the Q ¼ 0 model tracks some of the variability in the
response but has overall poor performance, and the estimate

remains close to the mean of the average trial response
(which is close to zero since about half the responses have neg-
ative amplitude). In the high-Q limit, the Kalman model does a
better job of tracking the simulated inter-trial variability. The
estimated responses for multiple Q values within the range of
Q ¼ 0 to 50 μM is additionally shown in Fig. 7(c), which dem-
onstrates the progression from a fairly static estimate to a fully
dynamic state estimate as a function of the increasing Kalman
state process noise (Q).

Figures 7(a)–7(c) demonstrate one such example simulation,
but to investigate this in more detail, the variance of the trials
(QB) was simulated at 15 increasing levels from stationary
(QB ¼ 0 μM2) to highly dynamic (QB ¼ 50 μM2). The
Kalman model was then run at 11 differing levels of state
process noise (Q) from the low-Q (Q ¼ 0 μM2) to high-Q
(Q ¼ 50 μM2) limit. This simulation was repeated 500 times
for each combination. In Fig. 7(d), we show the R2 model com-
parison between the simulated inter-trial variability and the

Fig. 7 The performance of the Kalman model was examined for increasing levels of inter-trial variability
in the simulated brain activity to investigate the use of the model for estimating nonstationary brain sig-
nals. (a) An example of a simulated data trace is shown for an inter-trial variance of QB ¼ 10 μM2 [also
indicated by the vertical white dotted line in (d) and (e)]. (b) The simulated response (Truth) is shown and
also the estimates of this response using a Kalman model with low Q (Q ¼ 0 μM2) and high Q
(Q ¼ 50 μM2). (c) Additional levels of Q from 0 to 50 μM2 are provided, demonstrating the transition
from nearly static to dynamic state estimate. The y -axis indicates the state noise (Q) used in each recov-
ery, and each signal is shown with a dc-shift to indicate the noise prior and plotted with the same linear
vertical scale for each line to allow comparison. These simulations were repeated 500 times at each of
the 11 levels of inter-trial variance (QB from 0 to 50 μM2), and the average is presented in (d). (d) The
contour map of the R2 comparison of the recovered estimate of trial-by-trial variations in the brain signal
and the simulated response as a function of the Kalman process noise (Q; y -axis) and the simulated
variability (QB ; x -axis). The static AR-IRLS estimate as a function of the simulated variability is shown in
(e). Data are simulated at a (mean contrast)-to-noise ratio of 1:1.
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recovered estimate from the (Z-transformed) average of the 500
simulations at each of the 165 combinations of Q and QB. For
comparison, the results of the static model at each of these QB
values are shown in Fig. 7(e). As can be seen for both the static
and low-Q Kalman filter cases, the model performance falls off
as inter-trial variance increases. At QB ¼ 10 μM (indicated in
the dotted white vertical line), which matches the simulations
shown in Figs. 7(a)–7(c), the static and low-Q Kalman models
have nearly zero performance (R2 < 0.1). In the Kalman filter,
however, this performance can be slightly recovered by increas-
ing the process noise (Q) of the model and can partly model
even large inter-trial variability, which agrees with the single
demonstration shown in Fig. 7(b). However, in this range,
the Kalman model has lower overall performance (R2 ∼ 0.4
to 0.5). Furthermore, at higher Q, the Kalman model loses sen-
sitivity to static responses (e.g., QB ¼ 0), so selecting a high Q
in the absence of inter-trial variability in the brain response is
quite detrimental.

4 Experimental Results
Experimental fNIRS data were collected on nine volunteers dur-
ing the CRT-balance task and analyzed post hoc using both the
proposed Kalman filter and off-line (static) ARðpÞ-IRLS mod-
els. Figure 8 shows the comparison of the estimated coefficients
(β; top row) and the t-statistics (bottom row) for the adaptive and
static models. The comparisons are shown using the first 1
through 5 min (entire data). These scatter plots show the corre-
lation between the offline and Kalman models. Each point rep-
resents the estimate for one of the fNIRS source–detector pairs
for one of the subjects. As expected from the simulations, ini-
tially, there is some mismatch between the two methods as sug-
gested by the slope of the regression lines at the 1 min mark due

to the time needed for the adaptive algorithm to converge.
Because the covariance matrix is typically initialized with a
large covariance (Cft¼0g ¼ 100 · I), the t-statistics were initially
underestimated as demonstrated by a slope value smaller than 1
until the adaptive algorithm converged. By the end of the scan
(5 min), the slopes of the regression lines for the coefficients and
t-statistics converged to values close to one, suggesting that
there are no systematically different biases between the estima-
tors. Both Pearson’s correlation (R) and Spearman’s correlation
(ρ) between the results of the two estimators increased over time
with more data. Above 3 min of data, the slope of the line com-
paring the two models for both the t-statistic and coefficients is
close to unity, indicating that the two models agreed with each
other on average. However, there was quite a bit of variation
around this slope, indicating that the data probably did have
some nonstationaries in the brain response, which were being
modeled by the adaptive Kalman filter but not the static model.

Finally, Fig. 9 shows the results for group-level analysis
using the subject-level results from the proposed online
Kalman filtering method as well as the offline AR-IRLS
method. Both methods show activation in the right frontal cortex
for the CRT task under both the fixed platform and swaying plat-
form conditions.

For the CRT response on fixed platform, the static and
Kalman filtering models produced similar results and activation
patterns as shown in Fig. 9. In the sway condition (where the
floor platform moves during the CRT task), the Kalman filter
model showed more significant activation on the right hemi-
sphere compared to the static model. Although this difference
was not statistically different between the two models, it
could indicate that the CRT response during sway had higher
single-trial variability (e.g., nonstationarity), which was better
modeled by the adaptive Kalman method.
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Fig. 8 Comparison of (a) coefficient (beta) and (b) t -statistics for the offline (AR-IRLS) and online
(Kalman) analysis methods across all channels of HbO2 for all subjects using varying lengths of the
time-series data from 1 to 5 min. Each point indicated by a “þ” symbol represents a source–detector
pair for one of the subjects and for one of the conditions (sway or fixed platform). The solid black
line indicates regression line indicating the relationship between the online Kalman estimates and
the offline AR-IRLS estimates. The dashed red line indicates the ideal regression line with a slope of
one. A difference in slopes between the red and black lines indicates systematic difference between
the two estimators.
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No significant differences were detected in the hemodynamic
response to the task between standing on a fixed versus a sway-
ing platform for either the static or Kalman filtering model.
In both models, the CRT response while on the fixed surface
was larger than the swaying platform, which is consistent with
a dual-task interference effect, although this difference was not
statistically significant for any channels.

5 Discussion
In this study, we have developed methods for adaptive estima-
tion of the GLM based on using two Kalman filters: one to esti-
mate the model and one to estimate an AR model of the residual
error. Before the update step of the first Kalman filter, the model
is whitened based on the AR coefficients of the second Kalman
filter and weighted by a weighting function. This mitigates
the effects of serial correlations and outliers on the estimator.
The proposed method was compared to an analogous offline
algorithm (AR-IRLS) that implements the same concepts.
The proposed online method showed very similar performance
to the AR-IRLS method for offline processing. Last, we dem-
onstrated the method on an experimental data set, in which the
online and offline methods showed good agreement.

5.1 Simulation Results

In the first half of this work, we provided simulation results that
showed similar performance of the static and Kalman filtering
models in terms of sensitivity, specificity, and control for type I
errors. In the implementation used in this work, we set the state
process noise (Q) to zero in the model. Under this limit, the
Kalman filter performs an optimal data integrator and converges
to the static solution for the estimate of the states. The Q ¼ 0
model thus produces a running estimate of the GLMmodel coef-
ficients based on the data collected up until the current sample
point. In this mode, the low-QKalman filter can be thought of as

an optimal cumulative integrator and estimates the weighted-
average response of all trials up to the current time point.
This model assumes a static probability distribution function
on the state estimate. This still allows some inter-trial variations
in the response estimate when the underlying brain signal is non-
stationary but converges to the static offline solution in the case
of time-invariant signals. Using this model, one is able to esti-
mate the brain activity during data collection and obtain a sol-
ution similar to that obtained in offline analysis. In particular, the
current Kalman filter implementation reports statistical values
and control for type I error, which is similar to our previous
AR-IRLS model.27 First, this current model provides better
control for the type I errors compared to the OLS version of
the GLM model used in the Kalman filter developed by
Abdelnour and Huppert.14 Similar to the performance of this
model in the static (offline) implementation described in
Ref. 27, the AR prewhitening filter allows correction of the
serially correlated errors due to systemic physiology. Without
correction, these correlations lead to overestimation of the effec-
tive degrees of freedom within the data and can result in high
FDRs. Second, the implementation of robust regression meth-
ods within the model allows better rejection of motion artifacts
as heavy-tailed outliers in the noise distribution.

The Kalman filter framework also allows for time-varying
states when Q is nonzero. This may be useful for investigating
inter-trial variance or for applications where the evoked
response is expected to be modulated, such as by learning or
habituation. In previous work by Abdelnour and Huppert,14 a
similar Kalman filtering implementation of the OLS regression
model was developed and applied to real-time estimation of
brain activity in the motor cortex. In that work, the nonzero
Q implementation of the Kalman filter was used to track
changes in brain activity. This model used the timing of task
events to define the GLM but allowed the state to dynamically
vary over time. In particular, subjects directed a brain–computer
interface by moving their left or right hand, allowing the Kalman
filter to track these changes in the level of brain activity in the
left and right motor areas of the brain. In Fig. 7, we investigated
the performance of our proposed model in the presence of trial-
to-trial variability in the brain response. We found that the
low-Q Kalman and static offline solutions provided similar
model fits. When the underlying brain signals were static
(no inter-trial variability), both models had good performance
(R2 > 0.9 for the CNR ¼ 1 case), but the performance of
both models decreases with added inter-trial variability.
Increasing the process noise (Q) in the Kalman filter was
able to partially recover the performance at high inter-trial vari-
ability, although the overall performance (R2 ∼ 0.3 to 0.5) was
diminished from the case of no simulated inter-trial variability.
This is not surprising since when process noise is too large, the
Kalman filter will overfit noise in the time series by allowing
large dynamic changes in the states. This suggests that a low
Q value for the Kalman filter is preferable unless there is strong
evidence of brain activity nonstationarity or if inter-trial variabil-
ity is of specific interest in the study (e.g., brain–computer inter-
faces or modeling neural habitation). We also note that in this
paper, we the state process noise tuning with constant AR model
order (P ¼ 30). Although we showed that the model order had
little effect above critical order, we did not look at the inter-
actions between model order and state process noise in the con-
text of capturing inter-trial variability and should be examined in
future studies.

Fig. 9 Group-level statistics for HbO2 using subject-level statistics
from the (a) offline (AR-IRLS) and (b) online (Kalman) analysis meth-
ods. Thick lines indicate activation at a significance level of p̂ < 0.05
(uncorrected) and are shown overlain on an atlas structural image
based on the registration of the fNIRS probe to the FpZ 10-20
coordinate.
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5.2 Experimental Results

In the experimental example, we applied this model to a brain
imaging task involving measurements of postural sway during a
dual-task choice reaction time (CRT) task. For a review on the
role of the CRT task in aging research, see Ref. 37. This task was
chosen as a demonstration because it highlights the ability to
image the brain during movement studies, which is one of
the advantages of fNIRS over other methods like fMRI. This
is also one of the more challenging experimental scenarios
for fNIRS because of the presence of motion artifacts associated
with postural changes and physical movement. In this data, we
looked at evoked brain activity to the CRT task while standing
on a fixed and a swaying platform. In both conditions, we found
activation on the right frontal cortex.

Similar to the simulation results, the Kalman filter model
produced results similar to the offline analysis using the AR-
IRLS model. As demonstrated by the scatter plots in Fig. 8,
there were no significant biases between these two models in
terms of either the estimate of the state (β) or the statistical
t-test. However, as noted in Figs. 8 and 9, there were per-channel
and subject variations between these two models. In particular,
the Kalman filter provides an adaptive estimate of the brain
activity. In the limit that the underlying state is stationary (as
in the case of our simulated data), the offline (static) model
and Kalman estimator with Q ¼ 0 will converge to the same
solution. This statement, however, is only true when the under-
lying brain activity is static (e.g., there is no trial-by-trial vari-
ability in the brain response). In the case of physiological
variability in the brain response, the Kalman filter will allow
better tracking of these changes compared to the static linear
model even under the limit of Q ¼ 0.

In the experimental data, we found similar estimates of brain
activity during the CRT task on the fixed platform for the
Kalman and static AR-IRLS model. However, in the sway con-
dition, we found greater effect sizes in the Kalman filtering
model. This could indicate greater trial-by-trial variability in
the brain activity under this condition, which could explain the
increased performance of the Kalman model compared to the
static solution.

Both the static and Kalman models showed increased brain
activity in the right frontal region during the CRT task. This
result is consistent with previous studies using similar choice
reaction tasks showing involvement in the right dorsal lateral
prefrontal cortex.38 During the sway condition, there was a
decrease (albeit not statistical) in the CRT response compared
to the fixed platform condition. Previous dual-task studies
using a similar CRT have demonstrated decreased task perfor-
mance during the balance task, particularly in older
populations.37,39 In particular, it is believed that choice reaction
time slows with aging and with increased task difficulty, which
allegedly reflects competition for attentional resources
(reviewed in Ref. 37). In this study, which used only younger
participants, we did not find any statistical changes in the reac-
tion time for subjects on the fixed versus swaying platform.
This could explain why we also failed to observe significant
differences in the brain responses under these two conditions.

5.3 Extensions of Model

One significant difference between the online and offline algo-
rithms is that the AR-IRLS method employs a model selection
step using BIC (Ref. 40) to choose an optimal AR model order.

However, this step is not possible in the current real-time imple-
mentation, which instead used fixed AR model order (in this
case, P ¼ 30). Our simulation results show that choosing an
appropriate model order beforehand did not significantly
degrade the performance and that the model was stable for a
range of order selections above some critical order (see Fig. 4).
In future work, it may be possible to implement a model selec-
tion variation of the second (AR model) Kalman estimator by
running in parallel several of these filters differing in the AR
model order and using the same criterion, such as BIC, to select
the best model. Additional testing is needed to validate such an
approach.

6 Conclusions
Potential applications of real-time imaging include the develop-
ment of brain–machine interfaces,22,23 monitoring attentional
states,41 providing bedside feedback in clinic,42 and the inves-
tigation of neurofeedback.43 We validated this method by per-
forming ROC analysis on simulations using simulated evoked
hemodynamics added to experimental resting-state NIRS data.
The resting-state NIRS data acted as real noise with contribu-
tions from physiology, motion, and instrument noise. Last, we
applied the proposed method post hoc to an fNIRS study of a
cognitive reaction time task during a standing balance task and
compared the adaptive estimation with the conventional static
linear estimation model. We found that the algorithm offers
adaptive estimation of fNIRS data that is suitable for real-
time application and is robust to serial correlations from physi-
ology and outliers from motion.

In conclusion, we developed a new method for adaptive esti-
mation of the GLM that is robust to motion artifacts and sys-
temic physiology. The new method showed performance
similar to the offline AR-IRLS algorithm. The method shows
better performance than OLS type methods in both sensitivity
and type I error control. Finally, since the method is adaptive,
it is suitable for real-time analysis of fNIRS data.
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