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Abstract. Understanding the functional wiring of neural circuits and their patterns of activation following sensory
stimulations is a fundamental task in the field of neuroscience. Furthermore, charting the activity patterns is
undoubtedly important to elucidate how neural networks operate in the living brain. However, optical imaging
must overcome the effects of light scattering in the tissue, which limit the light penetration depth and affect both
the imaging quantitation and sensitivity. Laminar optical tomography (LOT) is a three-dimensional (3-D) in-vivo
optical imaging technique that can be used for functional imaging. LOT can achieve both a resolution of 100 to
200 μm and a penetration depth of 2 to 3 mm based either on absorption or fluorescence contrast, as well as
large field-of-view and high acquisition speed. These advantages make LOT suitable for 3-D depth-resolved
functional imaging of the neural functions in the brain and spinal cords. We review the basic principles and
instrumentations of representative LOT systems, followed by recent applications of LOT on 3-D imaging of neu-
ral activities in the rat forepaw stimulation model and mouse whisker-barrel system. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.4.1.011009]
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1 Introduction
Visualization of evoked and spontaneous neuronal activity
in vivo is of great importance for understanding brain func-
tions.1,2 Localizing neural activities is a critical step in under-
standing the functional characteristics of neuronal interactions
in the brain.2–4 Due to both high spatial and temporal resolu-
tions, optical imaging has become an important technique to
investigate the neuronal and vascular responses to brain
activation.5–10 Based on either absorption, scattering, or fluores-
cence contrasts, various optical imaging methods have been
demonstrated for functional brain mapping,4 including diffuse
optical imaging (DOI),11–13 intrinsic optical signal (IOS)
imaging,14,15 multiphoton microscopy (MPM),16,17 optical
coherence tomography (OCT),18–22 and photoacoustic tomogra-
phy (PAT).23 However, limited resolution (DOI), relatively low
contrast (OCT), shallow penetration depth (IOS), or low data
acquisition speed (MPM and PAT) have somehow limited
their applications in imaging three-dimensional (3-D) neural
activities, a process that needs both high temporal and spatial
resolutions.24

Laminar optical tomography (LOT) was initially developed
to image absorption contrast for hemodynamic changes.25–28

Soon after, it was rapidly adapted to fluorescent molecular
imaging, applications termed either fluorescence laminar optical
tomography (FLOT)3,28,29 or mesoscopic fluorescence molecular
tomography (MFMT).30,31 Similar to diffuse optical tomography

(DOT),32 LOT uses an array of photon detectors or a charge-
coupled device (CCD) camera to collect photons emitted from
locations at different distances away from the illumination posi-
tion, enabling simultaneous detection of scattered light travel-
ling through different depths in the tissue. LOT is sensitive to
both absorption and fluorescence contrasts providing an axial
resolution of ∼100 to 200 μm with several millimeters imaging
depth.3,25,26,33 Recent studies demonstrated that angled illumina-
tion or detection modification (termed aFLOT) improves both
resolution and depth sensitivity.3,34 Another rapid, noncontact
depth-resolved imaging method called modulated imaging
has also been developed for quantitative, wide-field characteri-
zation of optical absorption and scattering properties of turbid
media, utilizing frequency-domain sampling and model-based
analysis of the spatial modulation transfer function.35–37

In this review paper, we focus on applications in neuroimag-
ing using LOT. We first introduce the physical principles and
instrumentation of LOT that enable depth-resolved imaging.
Then, we review representative applications in 3-D imaging of
the hemodynamic changes and neural activities in vivo.

2 Laminar Optical Tomography Principle and
Instrumentation

2.1 Laminar Optical Tomography Basic Principle

The working principle of LOT is based on light transport in tis-
sues,38 which includes three primary physical processes: scatter-
ing, absorption, and fluorescence. The relative probability of*Address all correspondence to: Yu Chen, E-mail: yuchen@umd.edu
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occurrence for each process depends upon the type of sample
imaged and the wavelength of light used.39 For in vivo brain
imaging, scattering is the prevalent phenomenon. During
light propagation, some of the photons will scatter out from
the surface of the tissue. These photons will be captured by
the detectors near the tissue surface with various separations
from the light illumination/entrance position (source–detector
separations). The light emerging at greater distances (i.e., larger
source–detector separation) has a higher statistical probability of
having travelled deeper into the tissue. By detecting the emerg-
ing light for a range of positions with different source–detector
separations, it is possible to perform depth-resolved imaging of
subsurface tissue structures through a proportional relationship
between the source–detector separations and the average inves-
tigation depths.28 Figure 1(a) shows the cross-sectional diagram
of a typical LOT source–detector configuration and representa-
tive photon paths. The detection geometry used in LOT is sim-
ilar to the detection geometry used in DOT. In contrast to DOT,
in which source–detector separations are typically several cen-
timeters,24 LOT utilizes smaller source–detector separations
(from several tens of microns to a few millimeters). As a result
of this difference, information from a relatively shallow depth
(millimeter or mesoscopic scale) is collected by the detectors,
enabling tomographic imaging with a higher resolution com-
pared to that of DOT.40

2.1.1 Mathematical expression of laminar optical
tomography based on fluorescence contrast

The linearized relationship (Born approximation) between the
measured fluorescence signals F and the steady-state fluores-
cence distribution O at position r can be expressed as38,40

EQ-TARGET;temp:intralink-;e001;63;403

Fðrn!; rm
�!Þ ¼ 1

4π

Z
Sð~r − rn

!Þ · Oð~rÞ · Gð rm�! − ~rÞd3~r

¼ Wn:mOðrÞ; (1)

where

EQ-TARGET;temp:intralink-;e002;63;335Oð~rÞ ¼ εex · cð~rÞ · γ; (2)

where S is the distribution over ~r from the excitation photon
radiance in the tissue resulting from a source at position rn

!
(related to the absorption and scattering coefficients, tissue

anisotropy, and refractive index of the tissue at this excitation
wavelength); G is the probability that a photon emitted by a
fluorescence source at position ~r within the tissue will be
detected by the detector at rm

�! (related to the absorption and
scattering coefficients, tissue anisotropy, and refractive index
of the tissue at this emission wavelength, respectively); εex is
the extinction coefficient of the fluorophores at the excitation
wavelength; cð~rÞ is the concentration of the fluorophore; and
γ is the fluorescent quantum yield of the fluorophores. Thus,
the measured fluorescence signals and the fluorescence distribu-
tion are related byW, which is referred to as the weight matrix or
sensitivity (Jacobian) matrix and represents the likely paths
(spatial sensitivity) into which the scattered photons have trav-
elled, and also back out of the tissue. Since the fluorescence
emission will always result in a longer wavelength from that
of the excitation light, W must account for the different absorb-
ing and scattering properties at the excitation and emission
wavelengths. One common scenario for functional brain imag-
ing is described as follows. The tissue is already fluorescent at
the initial stage (e.g., loaded with voltage-sensitive dye) and
then a local signal perturbation occurs (increase or decrease)
in the fluorescence at a discrete region after an intended stimu-
lation, which is similar for the absorption case. Equation (1) then
can be then expressed in the following way:

EQ-TARGET;temp:intralink-;e003;326;488

ΔFðrn!; rm
�!Þ ¼ 1

4π

Z
Sð~r − rn

!Þ · ΔOð~rÞ · Gð rm�! − ~rÞd3~r

¼ Wn:mΔOð~rÞ; (3)

where the small signal changeΔF results from a small change in
fluorescence distribution ΔO. We can imagine that when a pho-
ton interacts with a fluorophore, the photon is absorbed and a
photon with a longer wavelength is emitted, which is an inco-
herent process so the photon loses all knowledge of its previous
propagation status. So, the emission fluorescence will scatter in
an isotropic way within the tissue. Furthermore, it is preferable
to normalize the equation into the form known as “normalized
Born.” As shown in Eq. (4), the measured fluorescence signal is
normalized by F0 (the signal measured before perturbation) and
the right hand side is similarly divided by ∅0 (the expected
fluorescence simulated on a homogeneous medium):

Fig. 1 (a) Schematic of LOT source (S) and detector (D1 to D7) setup. (b) LOT system for depth-resolved
hemodynamic imaging of rat cortex.27
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EQ-TARGET;temp:intralink-;e004;63;752

ΔF
F0

¼ W
∅0

ΔO: (4)

By using “normalized Born,” it is very helpful to cancel the
systematic errors related to measurements (e.g., ariations in
gain between each detector).24,25,41 Also, in fluorescence LOT
measurements, fluorescence signals detected from shallower
layers are much stronger than those from the deeper perturbation
signal. By normalizing to the original signal, it becomes pos-
sible to measure the change in fluorescence before and after
the perturbation at different depths within a proper dynamic
range.24

2.1.2 Mathematical expression of laminar optical
tomography based on absorption contrast

For the absorption case, the detected photons scatter along a ran-
dom walk path from the source to the detectors and usually the
scattering is predominantly in the forward direction, so we
assumed that each scattering event causes a relatively small
change to the direction of the photon. The perturbed radiance
can be expressed as38

EQ-TARGET;temp:intralink-;e005;63;512

ΔMðrn!; rm
�!Þ ¼ −

1

4π

Z
M0ð~r − rn

!Þ · Δμað~rÞ

· Gð rm�! − ~rÞd3~r ¼ Wn:mΔμað~rÞ; (5)

where

EQ-TARGET;temp:intralink-;e006;63;443M0ðrn!; rm
�!Þ ¼ 1

4π

Z
Sð~r − ~rnÞ · Gð rm�! − ~rÞd3~r; (6)

where M0 is the measurement of a homogeneous background,
ΔM is the small change in measurement results from a small
change in absorption Δμa, while W in this absorption case need
not account for the change of excitation and emission wave-
lengths. Similar to Eq. (4), the normalized form for LOT
based on absorption contrast is expressed as24

EQ-TARGET;temp:intralink-;e007;63;339

ΔM
M0

¼ W
φ0

Δμa; (7)

where M0 represents the signal measured before a perturbation
and φ0 represents the simulated signal expected from the tissue
in the absence of the perturbation in absorption case.24

2.2 Forward Modeling in Laminar Optical
Tomography

The spatial sensitivity matrix W can be predicted using light
propagation models, in which tissue scattering and absorbing
properties, fluorophore characteristics (extinction coefficient
and quantum yield), and the relative positions of the light source
and detectors must be included. Several methods have been used
to model photon propagation in scattering samples.42,43 Two
common types of forward modeling methods are summarized
below.

2.2.1 Radiative transfer equation based model

Time-dependent radiative transfer equation (RTE) can be used to
accurately describe photon migration through tissue.44 The dif-
fusion approximation (DA) to the RTE is often applied since

solving RTE is complex and computationally expensive, and
there are analytic solutions to the infinite and semi-infinite
geometry with different boundary conditions of the diffusion
equation. 45,46 DA has been the preferred forward model in DOT
due to its computational efficiency and ease of implementa-
tion.40,42 It has been shown that DA cannot account for boundary
measurements when there are structures within the scattering
length from the surface of superficial tissues.47,48 In other words,
DA is invalid and will not provide accurate results for the small
source–detector separations typically used for LOT in meso-
scopic regime.

An improved DA to radiative transport, delta-P1 approxima-
tion, has been developed and validated for LOT.49 While delta-
P1 approximation can improve the computational efficiency, the
estimation accuracy is moderate (with relative errors ∼40%).
Also, there are larger relative errors when source–detector sep-
arations are very small or when the heterogeneity is very close to
the source or detectors due to the intrinsic limitations of the dif-
fusion model.49 However, for some applications in which high
speed is needed, delta-P1 approximation can be a good choice,
especially for LOT based on fluorescence contrast. Furthermore,
by taking advantage of the delta-isotropic phase function, the
phase function corrected DA approach improves the perfor-
mance of the DA and agrees with experimental results to an
excellent degree, opening a potential for modeling photon
propagation in LOT.50

2.2.2 Monte Carlo methods

By tracing the random walk steps that each photon packet takes
when it travels inside the tissue, the Monte Carlo (MC) method
has been used for simulating light transport in tissues for over
three decades. 51,52 MC provides a flexible and rigorous solution
to the problem of light transport in turbid media with a complex
structure.53,54 The MC method is able to solve the RTE with a
desired accuracy; hence, it is well suited to simulating the light
propagation in mesoscopic regimes.40,47,54,55 Compared to other
analytical or empirical methods, large packets of photons need
to be simulated (105 to 109) to obtain simulations with stochastic
accuracy, requiring intensive computation and a great deal of
time. A variety of methods for speeding up MC simulations,
including scaling methods,56 perturbation methods,57 hybrid
methods,58 variation reduction techniques,59 and parallel com-
putation,60,61 has been developed.54 The majority of LOT/
MFMT work employs the MC method to compute the optical
forward problem.3,27,26,40,62,63 Most of the current LOT/
MFMT results used only homogenous forward models for gen-
eration of the spatial sensitivity W, while heterogeneities (such
as large blood vessels and different tissue layers) could feasibly
be considered into the forward model to achieve improved fit-
ting between the data and the model.24,64 However, since the
photon path becomes more uncertain as they scatter further,
especially in complexed biological tissues, the mismatch
between the mathematical model prediction and actual measure-
ment may cause the degradation of resolution as a function of
depth.3,24,28

2.3 Image Reconstruction for Laminar Optical
Tomography

After knowing W, the next step is to solve Eqs. (3) or (4) to esti-
mate the 3-D distribution of the fluorescence (or absorption)
changes ΔOðorΔμaÞ. It is challenging to solve the inverse
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problem since the number of measurements available is often
much smaller than the number of unknown 3-D image elements
(voxels), which may result in a nonunique solution.65 Moreover,
compared to transmittance geometry, solving the inverse problem
for reflectance geometry is more challenging due to limited angu-
lar sampling.66 The typical approach to solve the inverse problems
is to minimize L ¼ WΔO − ΔFðorL ¼ WΔμa − ΔMÞ using an
iterative solver, with the estimate ΔOðorΔμaÞ updated iteratively
to minimize L until a preset number of iterations is reached or
when L is below a set value (tolerance).40 The most common
iterative methods employed in the field are the conjugate
gradient method,31 the least squares method,67,68 and algebraic
techniques.29,69 However, using only these iterative solvers is
still not enough since the system is ill-conditioned and very sen-
sitive to noise propagation.40 A regularization term is required to
tolerate small mismatches between the actual measurement and
the prediction using the forward model, which could result
from systematic errors or noise and inaccuracies in the light
propagation model.24 One typical formulation of the inverse
problem in LOT/MFMT is

EQ-TARGET;temp:intralink-;e008;63;532ΔO ¼ WTðWWT þ λIÞ−1ΔF½orΔμa
¼ WTðWWT þ λIÞ−1ΔM�; (8)

where λI is a regularization factor, which dictates how well the
data [ΔOðorΔμaÞ] fit the model [WΔOðorWΔμaÞ].24 It becomes
the Tikhonov regularization if I is the identity matrix, which has
been commonly used in LOT/MFMT. 25,34 Large values of λ will
generate superficially weighted smooth images with underesti-
mated quantification.24 Radially variant λI has the potential to
minimize high-frequency noise in the reconstructed image and
produce constant image resolution and contrast across the image
field,70 with I being a diagonal matrix, whose elements are the
square-root of the corresponding diagonal elements ofWTW,32,71

and λ can be selected via L-curve analysis.72

2.4 Laminar Optical Tomography Instrumentation

The first LOT system was reported in 2004.25 Since then,
several improvements or alternative designs have been investi-
gated.3,28,30,31,73,74 We first summarize two representative LOT
systems in the following sections, and then LOT/MFMT with
variant configurations and time-resolved protocol are also
covered.

2.4.1 Laminar optical tomography based on absorption
contrast

In the living brain, the main absorption contrast relies on the
distinctive absorption spectra of oxy- and deoxyhemoglobin
(HbO2 and HbR). At visible and near-infrared wavelengths,
hemoglobin in blood is the most significant absorber. Changes
in blood flow, blood volume, and oxygenation can be induced
following functional activities in the brain.75 Changing the oxy-
genation status of blood can be inferred from the changes in the
relative concentrations of HbO2 and HbR. In this way, absorp-
tion properties of the brain can be related to the variations in the
oxygenation state of hemoglobin and further connected to the
localized neural activities. In brain research, the cortical hemo-
dynamic response to stimulus provides a detectable signal,
which can report the presence and location of neuronal activa-
tion.27,76,77 Furthermore, by using different wavelengths of

excitation lights and the known absorption spectra of HbR
and HbO2, the changes in the concentration of HbO2 and
HbR can be calculated. One of the main advantages of the
method based on absorption contrast is that there is no need
to use any extrinsic chemical probes, which makes this approach
more feasible for clinical translation. The scattering of brain tis-
sues is often assumed not to change significantly during the
hemodynamic response.9 While this method can record the
hemodynamic responses to functional activations in the brain,
the inter-relation between neural activities and hemodynamic
changes is still an area of intense research.78–83

The general schematic of a LOT system based on absorption
contrast is shown in Fig. 1(b).27 Illumination light from one or
more lasers is first coupled into a fiber and then collimated. The
collimated light then passes through a polarizing beam splitter
and is steered by a pair of galvanometer scanning mirrors onto a
scan lens. Together with an objective lens, the beam is focused
onto the surface of the tissue. Signals collected from the tissue
will pass back up through the same light path and is descanned
by the galvanometers. To be able to separate the incident light
and the scatter light, a strongly polarized laser is normally used.
Since specular reflections from optics and the tissue surface will
maintain the same polarization, light that has been scattered sev-
eral times will lose its original polarization quickly. About 50%
of the scattered light emerging from the sample will be success-
fully separated from specular reflections through the polarizing
beam splitter. That successfully separated light then passes
through a lens and is focused onto a linear fiber bundle or
directly on the detector array.27 Different from the pinhole set-
ting in a confocal microscope, the line of fibers in the LOT sys-
tem acts like seven axially offset pinholes, each leading to a
separate detector corresponding to signals from different depths.
As the focused beam is scanned over the surface of the tissue,
scattered light emerging from the tissue at seven different depths
will be collected simultaneously by the seven avalanche photo-
diode detectors, which results in seven two-dimensional (2-D)
images per raster scan [e.g., if we choose 50 × 50 pixels over a
3.5 mm2 field of view (FoV), then we have 50 × 50 ¼ 2500
source positions and 50 × 50 × 7 ¼ 17; 500 measurements from
all the detector positions.]. A faster and more sensitive second
generation LOT system that utilizes three excitation wave-
lengths and incorporates simultaneous imaging of both absorp-
tion and fluorescence contrast has also been reported.28

2.4.2 Laminar optical tomography based on fluorescence
contrast

Exogenous fluorescent dyes, as well as transgenic methods, can
also provide highly specific optical contrast enhancement. They
can report functional parameters, such as changes in membrane
potential [voltage-sensitive dyes (VSD)] or ion concentrations
(pH-, calcium-, chloride-, potassium-sensitive dyes).4,84 By
binding to the neural membrane and converting changes in
transmembrane voltage into the fluorescence signal of the emit-
ted light, VSD imaging provides a useful and direct manner in
revealing activities of the neural networks in the brain with
relatively high spatial and temporal resolution (up to microsec-
onds).4 Compared to hemodynamics imaging based on absorption
contrast (slow signal changes ∼ second time scale), fluorescence
signal change originates directly from rapid changes of neural
activities, which is at the millisecond scale.4

The main difference of the LOT system based on fluores-
cence contrast compared to the LOT based on absorption
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contrast is the use of a dichroic mirror (for fluorescence) or a
polarizing beam splitter (for absorption), and a long-pass or
band-pass optical filter (depending on the type of fluorophores)
before the detectors to further block the excitation light.
Figure 2(a) shows one schematic diagram of a recently devel-
oped line-scanning aFLOT system.3 The excitation light from a
637-nm laser diode is collimated and then coupled into a fiber to
shape the light beam. An objective lens is then used to collimate
the light from the fiber and the collimated light is further
expanded into line-field illumination using a cylindrical lens.
The emitted fluorescent light is collected through the objective
lens, dichroic mirror, emission filter, and finally focused onto a
high-speed CCD camera. Since the illumination light path is not
confocal with the emission light path, the dichroic mirror is
optional. Both fluorescence and reflectance images can be
recorded by changing the corresponding filters. This system
achieves scanning by moving the sample, using a precisely
controlled motor stage laterally in the scanning direction
(perpendicular to the line illumination direction).3 The acquired
image is in XYS format (where X and Y represent X and Y
dimensions of the 2-D image acquired by CCD, S represents
the different scanning positions, X ¼ 184, Y ¼ 128; S ¼ 120,
with a pixel size of ∼23 μm in the specific system introduced).
To reconstruct the images, the first-order Born approximation
between the measurement and the fluorophore distribution
was applied on the cross-section FoVXZ, with 100 source–detec-
tor pairs and 100 scanning positions chosen to constitute 10,000
measurement modes.3 And each reconstructed FoVXZ including
100 × 100 pixels with a pixel size of ∼23 μm. Weight matrixW
is therefore of size 10; 000 × 10; 000.3 Finally, the 3-D FoVXYZ

was constituted by superimposing individual FoVXZ in the Y
direction (illumination line direction).3 Although a graphics
processing unit was applied for parallel computation, the
reconstruction process for one 3-D image still takes around
10 min. However, with parallel computation developing so
rapidly, we definitely believe that the time needed for MC
modeling and image reconstruction will not be a concern in
the future.

2.4.3 Laminar optical tomography/mesoscopic
fluorescence molecular tomography with
variant configurations

Several LOT/MFMT systems have been reported using different
source/detector and scanning configurations, including point
scanning with sparse array detection,26 point-scanning with
dense array detection,68 and line-scanning with dense array
detection.29,34 Laser diodes or solid-state lasers are typically
chosen as the light source.40 A point-focused light illumination
with a one-dimensional (1-D) array detector is usually used in
the LOT/MFMT system.26 The 3-D images are obtained through
2-D raster scanning of the illumination point, as shown in
Fig. 1(b). Alternatively, a line-field illumination with a 2-D
array detector [CCD or electron multiplying CCD (EMCCD),
or 2-D photomultiplier tube] can be utilized, and then only 1-D
scanning is required to acquire the 3-D information, as shown in
Fig. 2(a). Line-scan imaging can alleviate the complicated 2-D
scanner design. While similar to confocal microscopy, the line
illumination mode potentially decreases the axial resolution.85

We should note that in LOT/MFMT, a detector closer to the
illumination source will receive high light intensity, while a
detector with larger source–detector separation collects a much
lower signal, meaning that the detector with a larger source–
detector separation may need higher gain. If possible, each
detector’s gain should be chosen to match its optimal signal
intensity. However, when using CCD/EMCCD as the array
detector, all pixels have the same gain and exposure time,
which is a main drawback of such a design and may limit the
system’s dynamic range.

2.4.4 Laminar optical tomography/mesoscopic
fluorescence molecular tomography recording
with time-resolved protocol

Hemodynamic response is usually slow and happens in seconds;
therefore, the LOT system with ∼40 frames∕s imaging speed
can be utilized in studying hemodynamic responses.27 In
order to use LOT/MFMT to record VSD dynamics, which

Fig. 2 (a) Schematic of the aFLOT system. LD, laser diode; O, objective lens; P, polarizer; S, shutter; I,
iris; CL, cylindrical lens; F, filter; DM, dichroic mirror.3 (b) Time-resolved image acquisition protocol.3
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reflects the cellular processes at the millisecond scale,4 a new
acquisition protocol has been investigated.3,26 Hillman et al.26

first reported a time-resolved FLOT system with an effective
frame rate of 667 Hz imaging speed on perfused rat hearts.
Basically, it requires the biological response to be repeatable
for each stimulation trial and records the time relation of the
acquired data with respect to the stimulus. Recently, Tang
et al.3 used aFLOT to visualize neural activities in the living
animal brain using VSD. One representative image acquisition
protocols for time-resolved aFLOT is illustrated in Fig. 2(b).
The line-illumination light is focused on the border of the
desired FoVat the beginning of recording. An experimental ses-
sion including all the time related images is acquired at each
scanning position (e.g., for the whisker stimulation experiment,
the experimental session consists of the recording before stimu-
lus onset, and long-enough recording after stimulus onset to
cover both the activation and recovery of neuronal signals).
Then, another experimental session is performed to obtain the
dataset at the next illumination/collection area by moving a step
in the scanning direction. This process is repeated until the entire
FoV is covered. The process is similar to previously published
point-scanning FLOT.26 For reconstruction of data recorded
using the time-resolved protocol, the measurements from multi-
ple detectors at different scanning positions with the same frame
number (or corresponding to the same time points in a dynamic
process) should be first regrouped as one dataset. Then, the
entire time course of 3-D neural responses can be obtained
by repeating the reconstruction process for all time points.

3 Representative Applications in
Neuroscience

In this section, we will review three representative examples of
LOT/MFMT in vivo imaging applications in neuroscience. The
first two are imaging hemodynamic responses using absorption
contrast, targeting the cortex and the spinal cord, respectively.
The last example is focalized on imaging the neural activities
evoked in the whisker system of mice by deflection of a single
whisker in vivo based on fluorescence contrast using VSDs.

3.1 Laminar Optical Tomography for In Vivo
Imaging of Hemodynamics in Cortex

The cortical hemodynamic response to stimulus can provide a
detectable signal, which can indicate the presence and location
of neuronal activation.27,77 The LOT system shown in Fig. 1(b)
has been used to perform depth-resolved optical imaging of
hemodynamic responses to forepaw stimulation in the exposed
rat cortex in vivo.27 This new system utilizes multiwavelength
scanning (473 and 532 nm) and acquires up to 10 3-D images
per second.27 Figure 3(a) shows the CCD camera image of the
FoV, and the LOT FoV is identified by the dotted white square.
Figure 3(b) shows the HbR, HbO2, and total hemoglobin (HbT)
functional changes 0.6 s after cessation of the stimulus from the
horizontal LOT slices. Different slices can sample and correspond
to different depth regions (e.g., the slice at 600 μm corresponds to
deeper cortical layers (layers III–IV) and predominantly samples
changes in the capillary bed). The advantage of LOT can be
revealed more clearly in Figs. 3(c) and 3(d).27 Vertical slices
from the 3-D HbO2 data in the x–z plane transecting a surface
draining vein and the focal capillary region are extracted,
which are labeled (i) and (ii) in (a) and (b), respectively.27 Based
on the distinctive differences among the dynamic behaviors of
the arteriolar, capillary, and venous responses observed, LOT

responses can be further segmented into regions, as shown in
Fig. 3(e). Then, the distinctive functional temporal signatures
associated with the hemodynamic response in different vascular
compartments can be further investigated.27 Rapid, full-field two-
photon microscopy was also applied to validate the LOT findings
and to further explore the vascular mechanisms of the hemo-
dynamic response in vivo.27

3.2 Hemodynamics of Spinal Cord

Spinal cord trauma is a serious injury and it is crucial to under-
stand post-traumatic neuronal reorganization in the spinal cord.86

In a recent study, Ouakli et al.86 investigated LOT for imaging
spinal cord activation following electrode stimulation in the left
hind paw, with simultaneous intrinsic optical imaging of the cor-
tex in rats. This study indicates that LOT is a potentially powerful
imaging method to study activation in the spinal cord and sub-
sequent disruption after injury. The LOT system used in this
study is similar to the system illustrated in Fig. 1(b) except only
a 690-nm excitation light source was used, which means HbR
was the principal chromophore providing absorption contrast.86

Figures 4(a) and 4(b) show the simultaneously quantified activa-
tion in the cortex and spinal cord, in which Fig. 4(a) represents
LOT signals from the first detector in the spinal cord at different
time points after stimulation. An initial slight dip can be seen
locally in the dorsal vein at 3.6 s, which may provide evidence
that neurons initially use up local oxygen more quickly than it is
being supplied by the gradually increased blood flow.9 At 10.80 s,
the increase appears on the left side of the cord indicating blood is
finally drained through the dorsal vein after electrode stimulation
in the left hind paw. One interesting observation is that the hemo-
dynamic response in the spinal cord is ipsilateral compared to the
contralateral response in the cortex, as shown in Fig. 4(b).
Figures 4(c) and 4(d) show the reconstructed images. Most
response is ipsilateral on superficial layers of the dorsal horn, as
shown in Fig. 4(c), which corresponds well to the location of gray
matter in the spinal cord in Fig. 4(d). On the other hand, the signal
in deeper sections of the spinal cord appears more diffused. Also,
contralateral response is observed, which may originate from
interneuron connections. Further improvements are needed to
increase the imaging depth in order to image deeper signals.

3.3 Fluorescence Laminar Optical Tomography for
Brain Cortex Imaging with Voltage-Sensitive
Dyes

The rodent whisker-barrel system serves as an excellent model to
investigate the development, organization, function, and plasticity
of mammalian sensory pathways.87 In this system, whiskers on
the snout are represented by neuronal modules at the brainstem
(barrelettes), thalamic (barreloids), and neocortical (barrels)
levels.87–89 The barrel fields are close to the brain surface, there-
fore, many imaging studies have been carried out at this
region.10,90–98 However, virtually all of the previous in vivo
VSD cortical imaging studies obtain only 2-D depth-integrated
responses, lacking depth-dependent information. Recently, by
combining aFLOT with VSDs, in vivo 3-D neural activities in
the whisker barrel cortex of mice following deflection of a single
whisker have been demonstrated with 5-ms temporal resolution.
This study utilized the aFLOT system and time-resolved protocol,
as shown in Figs. 2(a) and 2(b). In this study, system performance
was first characterized by imaging a quantum-dot-embedded
hydrogel and 100-μm glass capillary tube in living mouse brain.
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Although the accuracy and resolution of aFLOT degraded with
depth, the reconstruction distortion was within �120 μm up to
800 μm depth (see Fig. 5), covering up to layer V in the cortex
of young mice. In addition to the 3-D static system performance
evaluation, a rapid response to direct electrical stimulation
through the use of a bipolar electrode in the living mouse
brain was observed to verify the time-resolved protocol. Then,

aFLOT was used to record 3-D neural activities evoked in the
barrel cortex by deflection of a single whisker in vivo. The C2
whisker was used for 20-ms mechanical stimulation, performed
by an air-puff stimulator. Figure 6 shows the 3-D aFLOT recon-
structed changes in fluorescence [ΔF∕F (%), ordinate] following
C2 whisker stimulation. The appearance of the signal was about
30 ms after the stimulus. After reaching its peak at 50 ms, the

Fig. 3 LOT of the cortical hemodynamic response to forepaw stimulus in rat.27 (a) CCD image of rat
cortical surface through thinned skull. The region imaged using LOT is indicated by the white dotted
lines. m, medial; c: caudal.27 (b) Depth-resolved LOT images of oxy-, deoxy- and total hemoglobin con-
centration changes in the cortex 0.6 s after cessation of a 4 s forepaw stimulus at cortical depths of 0, 200,
and 600μm.27 (c) Depth-resolved cross-section of the HbO2 response at the position indicated with (i) in
panel (b), representing a large draining vein. The corresponding HbO2, HbR, and HbT depth-resolved
time-courses around x ¼ 1800 μm (dotted white line) are shown to the right.27 (d) Depth-resolved cross-
section of the HbO2 response at the position indicated with (ii) in panel b. The corresponding HbO2, HbR,
and HbT depth resolved time-courses around x ¼ 750 μm are shown to the right. Numbers on each
temporal trace represent their depth of origin in microns. “a,” “v,” and “c” denote regions identified as
arteriole, vein, and capillary.27 (e) Isosurface rendering of hemodynamic response resolved into arterial,
capillary, and venous compartments based on their distinctive temporal behaviors (40% isosurface).27
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activated signals disappeared gradually. Furthermore, the results
can be used to extract the 3-D dynamic activity patterns, which
serve as a 3-D imaging tool to study the neural network process-
ing in different parts of the cerebral cortex.3

4 Summary
The 3-D imaging techniques enabling examination of spatiotem-
poral patterns of neuronal activities will definitely provide more
details in explaining how neural networks operate in the living
brain. In this paper, we first review the fundamental basis of the
LOT/MFMT system, including the MC method, which is usu-
ally used to model photon propagation, and common iterative
methods and regularization models for image reconstruction.
Specific LOT/MFMT systems based on absorption and fluores-
cence are described in detail, including the data acquisition
process, data size, and image reconstruction process. And,
finally, three representative examples of LOT/MFMT in vivo
imaging applications in neuroscience are presented.

By adopting a microscopy-based setup andDOT imaging prin-
ciples, LOT/MFMT can perform 3-D imaging with higher

resolution 100 to 200 μm than DOT and deeper penetration
(2 to 3 mm) than confocal and two-photon microscopy while
there is always a trade-off between axial resolution and penetra-
tion depth. Due to the limited penetration depth of LOT/MFMT,
thinning or exposing the skull is usually necessary when imaging
the cortical hemodynamic responses or neural activities using
LOT/MFMT, which indicates that imaging the brain with
LOT/MFMT is mainly applicable in small-sized animals.3,27 In
such cases, LOT/MFMT has been focused to applications in
which tissues of interest are superficial, such as the exposed
mouse brain and skin, as well as oncological applications.24,74,34,99

For instance, LOT/MFMT has been applied to image skin cancers
to describe the depth and thickness of pigmented skin lesions in
clinical settings99 and has also been employed to image the bio-
distribution of a photodynamic therapeutic agent with ultrasound
co-registration in skin cancer models in vivo, though we can see
there is still a long way to human clinical translation.74 Imaging of
internal organs using LOT/MFMT can be potentially achieved via
endoscopic, intraluminal, or an intrasurgical imaging setup.24 Laser
scanning microscopy (e.g., confocal and two-photon microscopy)

Fig. 4 (a) Time course of LOT signals, induced by left hind paw stimulation, collected over 15 s at the
0.9 ×muscle threshold (detector 1 with a source–detector separation of 575 μm).86 (b) Photo of the
exposed cortex (left) and maximum IOS acquired simultaneously on the somatosensory cortex
(right).86 (c) 3-D map of neural activation in the spinal cord induced by left hind paw stimulation at
the 0.9 ×muscle threshold. Ipsilateral activation around z ¼ 0.4 mm is consistent with interneuron
activation.86 (d) Reconstruction viewed across the segmented volume along the line in (c).86
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aims to reject light that has been scattered to obtain high-reso-
lution images of the tissue either by isolating the signal from the
focus using a conjugated pinhole or by employing the nonlinear
effect.100,101 Instead, LOT/MFMT takes advantage of the scat-
tered light so that they are much more sensitive to the optical
signal changes in the tissue. LOT/MFMTobtains depth-resolved
information by measuring the scattered light emerging from the
tissue using detectors at different distances from the source illu-
mination position, instead of scanning the tissue in the axial
direction, which can dramatically improve the data acquisition
efficiency. On the other hand, since the detected light undergoes
multiple scattering in the tissue, the resolution of LOT/MFMT
cannot compete with laser scanning microscopy. Moreover, esti-
mation of photon migration using the mathematical models
could not be exact, especially for the complicated biological

tissues and the path of photons that become more uncertain
as they scatter further. LOT/MFMT faces resolution deteriora-
tion of these reconstructed images as a function of depth.3,24,28 A
combination of dense spatial datasets with regularization terms
like compressive sensing-based methods has the potential to
push LOT/MFMT resolution close to 100 μm or beyond,
even at depths of several millimeters.40 In terms of image visu-
alization, since laser scanning microscopy uses a more “direct”
way to obtain intensity of every pixel in the image, it can achieve
nearly real-time image feedback. While applying MC modeling
and regularization term to solve the inverse problem, LOT/
MFMT has a high computational burden and is time-consuming
especially for a system with high source–detector density, as
mentioned in Sec. 2.4. As a result, for now, LOT/MFMT cannot
provide the reconstructed image in real time, perhaps restricting

Fig. 5 3-D PSFs of the aFLOT system at 302 μm (a), 664 μm (b), and (c) 785 μm.3 Insets show the
isosurface of PSFs with μ 0

s ¼ 0.5∕mm. Legends report FWHM in μm in x , y , and z directions.
(d) FWHM versus depths. Filled and open circles and multiplication symbols represent, respectively,
the FWHM in x , y , and z directions of a single PSF at the corresponding depth.3 (e,f) Reconstructed
3-D aFLOT fluorescence images of 100-μm glass capillary tube superimposed with OCT data.3
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the translation to clinical applications. With the advent of the
supercomputer, the time needed for high-burden computation
in LOT/MFMT could be alleviated significantly.

With the advantages of overcoming the scattering limit,
offering relatively high resolution, multiplexing capabilities,
large FoV, and high acquisition speed, LOT provides a promis-
ing imaging technique to investigate 3-D neural activities in a
minimally invasive manner in vivo. By combining absorption
and fluorescence LOT into one unit, it also has the potential
to study neurovascular coupling since hemodynamic responses
and neural activities can be imaged by absorption and fluores-
cence LOT, respectively. Being able to achieve depth-resolved
imaging of both absorption and fluorescence contrast, LOT/
MFMT is also a promising nondestructive imaging tool in onco-
logical applications and the tissue engineering area.
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