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Abstract. Multimodal imaging combining optoacoustic tomography (OAT) with magnetic resonance imaging
(MRI) enables spatiotemporal resolution complementarity, improves accurate quantification, and thus yields
more insights into physiology and pathophysiology. However, only manual landmark based coregistration of
OAT-MRI has been used so far. We developed a toolbox (RegOA), which frames an automated registration
pipeline to align OAT with high-field MR images based on mutual information. We assessed the performance
of the registration method using images acquired on one phantom with fiducial markers and in vivo/ex vivo data
of mouse heads/brain. The accuracy and robustness of the registration are improved using a two-step registra-
tion method with preprocessing of OAT and MRI data. The major advantages of our approach are minimal user
input and quantitative assessment of the registration error. The registration with MR and standard reference atlas
enables regional information extraction, facilitating the accurate, objective, and rapid analysis of large groups of
rodent OAT and MR images. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.6.2.025001]
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1 Introduction
Photoacoustic or optoacoustic tomography (OAT) is an emerg-
ing imaging modality with applications both in the preclinical
arena and in the clinical settings.1–3 OAT is based on photo-
acoustic effect: the energy absorbed by an endogenous chromo-
phore in the tissue (for example, oxy/deoxy-hemoglobin) or by
an exogenous probe following excitation by short-pulsed light is
transformed in part into heat, leading to a transient thermoelastic
expansion and the subsequent generation of broadband pressure
waves, which can be detected by ultrasound transducers.4 The
use of reconstruction algorithms, whether through a straight-
forward backprojection or using sophisticated model-based
procedures, enables localization of photoabsorbing materials
in deep tissue. OAT is particularly attractive for (neuro)imaging
of rodents as it combines the sensitivity and tissue coverage
of optical imaging with high spatial resolution provided by
ultrasound,5–9 enabling versatile applications. For example,
OAT allows studying cerebral hemodynamics,3 neural activity
based on calcium activity,10 activity of enzymes such as metal-
loproteinase,11 or blood brain barrier integrity12 in animal mod-
els in vivo. Similarly, the method yields phenotypic readouts of
pathology, such as the deposition of amyloid beta in murine
models of Alzheimer’s disease13 or hypoxia in experimental
glioblastoma.14

Accurate quantitative analysis of OAT signals is essential for
applications in understanding physiology under normal condi-
tion and disease states.15,16 A prerequisite for quantitative analy-
sis is the accurate allocation of OAT signals to anatomical
structures. However, this is hampered by the inherent low

soft tissue contrast of OAT for most tissues, which renders quan-
tification challenging. Combining OATwith imaging modalities
providing high anatomical definition, such as magnetic reso-
nance imaging (MRI) or x-ray computed tomography (CT),
will account for the limitation of OATand thus enable more pre-
cise quantification. Moreover, properly registered multimodal
imaging data allow obtaining structural, physiological, and
molecular information from the same animal, increasing the
scientific value of the investigation and reducing the number
of animals needed for a study. The methods for registering
OAT-MRI reported so far were all based on landmarks in
the images,11,17–19 and hence depend largely on manual input.
Unbiased automated registration of OAT data with MRI or
other modalities is still lacking.

Registration methodologies can be generally classified into
feature- or intensity-based approaches.20 Automated feature-
based registration requires extraction of features, such as edges,
regions, and centroids, through gradient-based methods or
segmentation.21,22 Feature extraction is time-consuming and
the algorithm selected may differ from case to case.23 In con-
trast, intensity-based registration is a universal alternative not
requiring feature identification. The principle of automated
intensity-based registration is to seek a geometrical transforma-
tion in an iterative manner by minimizing (or maximizing)
a similarity metric. Commonly used similarity metrics for
mono- or multimodal registration include sum-of-square-differ-
ence, correlation coefficient, cross correlation, correlation ratio,
mutual information (MI), and manifold-based measures.20,24

The MI-based registration tries to maximize the amount of
shared information between two images by evaluating the
Shannon entropy derived from the joint probability distribution
of the image intensity.20 MI has been proven robust for*Address all correspondence to Ruiqing Ni, E-mail: ni@biomed.ee.ethz.ch
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registering multimodal images using MRI-positron emission
tomography (PET) and CT-PET.24

To address the challenges of coregistering rodent brain
images acquired using OAT and MRI, we developed an auto-
mated OAT-MRI registration toolbox “RegOA” based on MI.
The performance of the registration toolbox was assessed using
a phantom with fiducial markers and, for mouse head/brain
images, both in vivo and ex vivo. The accuracy of the algorithm
was evaluated quantitatively by metrics, such as the target
registration error (TRE) and the Euclidean effectiveness ratio
(EER).25 The robustness of the registration algorithm was
tested by rotating the OAT images against fixed MRI images.
RegOA also supports exporting the files to other well-estab-
lished image analysis/registration platforms, such as AFNI26

and SPM.27

2 Methods

2.1 Framework of Registration

We have developed RegOA, an open-source software toolbox
for OAT-MRI registration based on MATLAB (MathWorks,
Massachusetts, version: R2018a). The framework of RegOA
is shown in Fig. 1. Raw data containing two-dimensional (2-D)
or three-dimensional (3-D) MRI and OAT image stacks were
preprocessed, which included adaptive filtering and segmenta-
tion of the region of interest. The preprocessed images were then
registered using a two-step strategy based onMI (or M3 method,
explained in “registration algorithm”). The registration results

can be visualized and evaluated with metrics such as TRE
and EER.25 We have also implemented registration of OAT
images to a standard MRI brain atlas for further analysis.
Finally, RegOA allows exporting registered results in a NIfTI
format to other widely used imaging analysis toolbox, such as
SPM27 and AFNI,26 for volume-based morphometry and voxel-
based analysis.

2.1.1 Preprocessing

Each slice of MRI and OAT stacks was preprocessed to remove
noise and to segment the subject from the background. Many
sophisticated nonlinear filters have been developed for denois-
ing MRI images; here, we have adopted a 2-D adaptive low-pass
Wiener filter that estimates the local mean and variance around
each pixel and removes the stochastic noise in MR images with-
out losing important features of the subject.28–30 Then the MRI
slices were segmented using an active contour model or
“snakes,” which evolves the segmentation result iteratively
(details in supplementary material, Sec. 1 in Ref. 31). The initial
contour is provided by the user by drawing a coarse contour
around the object. The maximum iteration cycle number was
set to 50. OAT data displayed ripple-shaped artifacts arising
from limitation of OAT instrumentation, reconstruction algo-
rithm, and minor speckle noise. Therefore, a “Canny edge”
detector (Gaussian filter, size 7 × 7 pixels) instead of the
low-pass Wiener filter was applied to OAT images to identify
clean and well-defined edges of the object and successfully dis-
card fictitious edges from the image.32 Thereafter, segmentation
using snakes identical to the one used in MRI preprocessing was
applied (supplementary Fig. 2 in Ref. 33).

2.1.2 Registration algorithm

To implement automated intensity-based registration, we used
MI, which is a commonly used similarity metric or cost function
for the multimodal registration problem. MI-based registration
measures the statistical dependence between the intensities of
corresponding voxels in both images. It is assumed that for
well-aligned images the value of MI becomes maximal. MI
was calculated as

EQ-TARGET;temp:intralink-;e001;326;307MIðA; BÞ ¼ HðAÞ þHðBÞ −HðA; BÞ; (1)

where HðAÞ and HðBÞ denote the entropies of image A and B
(in our case, MRI and OAT images, respectively) andHðA; BÞ is
the joint entropy of both images.34 The MR image was set as
the fixed image (reference) and the OAT image as the floating
image during registration. The floating image underwent affine
transformation, i.e., translation, rotation, and scaling. The appli-
cation of affine transformation has been shown to yield robust
results for the registration of rodent brain images acquired using
OAT and MRI.11,13,18 In addition, a one-plus-one evolutionary
optimization algorithm was applied to search for the transforma-
tion parameters. The final parameters for the transformation are
generated by iteratively perturbing or mutating the parameters
from the last iteration (the parent).35 For the evolutionary opti-
mization, the growth factor, minimum size, and initial value of
the search radius were set to 1.05, 1.5 × 10−6, and 6.25 × 10−3,
respectively. The maximum number of iterations for optimiza-
tion was set to 100. As MI-based methods have not yet been
applied in the context of multimodal registration involving
OAT, we evaluated three alternative methods:

Fig. 1 The workflow for automatic registration. The gray boxes indi-
cate dataset generated at different steps in the workflow and the white
boxes represent the corresponding image processing technique.
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• M1: direct MI-based registration method without prepro-
cessing of MRI and OAT images.

• M2: direct MI-based registration method with prepro-
cessed MRI and OAT images.

• M3: two-step MI-based registration method with prepro-
cessed MRI and OAT images.

For M3, the first step was to obtain a primary transformation
matrix using masks (segmented binary images) generated in
the preprocessing step for MRI and OAT images. The metric
for the primary transformation is mean squared difference.20

The second step was to apply MI-based registration to the result
from the first step. The settings of metrics and optimization in
second step of M3 are identical to those used in M1 and M2.

2.1.3 Graphic user interface

A user-friendly graphic user interface (GUI) was developed
to facilitate the implementation of RegOA. The functions
and features in the GUI were designed to map the registration
process from loading of OAT and MRI datasets, preprocessing,
registration, exporting files in NIfTI format, evaluation of regis-
tration quality, to image saving, and visualization at different
stages (Fig. 2).

2.2 Phantom

To assess the performance of the OAT-MRI registration method,
a phantom with fiducial markers was measured using OAT
and MRI systems. The dimensions of the phantom were
13 × 14.5 × 40 mm3, with a curved top surface of 30-mm diam-
eter mimicking a mouse head. A cross section of the phantom is
shown in Fig. 3(a) with three parallel holes of 1.4-mm diameter
for incorporating contrast agents. The phantom was made of

Fig. 2 The GUI of registration toolbox RegOA. The blue panels (1) are displayed images, including
loaded OAT and MRI data and the registration result. The drop-down button (2) controls different display
options for (1). Status lamps (3) display the status of a certain function: green notifies accomplishment
while red denotes an unfinished state. Normal buttons are for functions, including loading OAT and MRI
datasets, preprocessing, registration, exporting files in NIfTI format, evaluation of registration quality, and
image saving.

Fig. 3 Phantom design and fabrication: (a) the cross section of the
phantom with three inclusions and (b) an aluminum mould used for
fabricating the phantom. Three polyester tubes were inserted as
the contrast inclusions.
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50 mL water with 3% agar and 3 mL intralipid (Sigma-Aldrich,
Switzerland) using a home-designed mould [Fig. 3(b)].
Three polyester tubes (diameter: 1.2 mm) were inserted into
the mould before pouring heated agar solution. A solution con-
taining optoacoustic visible gold nanoparticle Ntracker DM50
(10 μL, Nanopartz, excitation peak: 775 nm) and MRI contrast
agent gadolinium-DTPA (5 μL, Guerbet, France) was prepared
in 200 μL phosphate-buffered saline (PBS) and injected into
polyester tubes after cooling.

2.3 Animal Model

All procedures conformed to the national guidelines of the
Swiss Federal Act on animal protection and were approved
by the Cantonal Veterinary Office Zurich (Permit No. 18-2014).
Three C57BL/6J mice (Janvier, France), weighting 20 to 25 g,
8 to 10 weeks of age were used. Animals were housed in
ventilated cages inside a temperature-controlled room, under
a 12-h dark/light cycle. Pelleted food (3437PXL15, CARGILL)
and water were provided ad libitum.

2.4 Ex Vivo Mouse Brain

A whole mouse brain was imaged ex vivo with OAT after
removal of the skull. The brain was embedded in agar 3% in
PBS (pH 7.4). A tube for holding the mouse brain was made
from agar using a mold consisting of a 20- and a 5-mL syringe
that were aligned coaxially resulting in an agar tube of
25∕15-mm outer/inner diameter. The mouse brain was placed
in coronal orientation inside the agar tube, which was filled
with PBS for removing any residual air. The agar tube was
removed from syringe prior to OAT and MR imaging.

2.5 Optoacoustic Tomography

For OAT imaging of both phantom and brain, slice-by-slice
2-D imaging setting was used. The in-plane resolution is
100 × 100 μm2. For imaging of the phantom with fiducial
markers, laser excitation pulses of 9 ns were delivered at
seven wavelengths (680, 715, 730, 775, 800, 850, and
900 nm), step size ¼ 0.3 mm moving along horizontal direc-
tion, field of view ¼ 20 mm × 20 mm, 10 averages, and
scan time ¼ 20 min. For ex vivo mouse brain, the agar tube
containing mouse brain was fixed into the supplied rigid phan-
tom holder and placed into the imaging chamber of the OAT
system. Laser excitation pulses of 9 ns were delivered at six
wavelengths (680, 715, 730, 760, 800, and 850 nm) in coronal
orientation, step size ¼ 0.3 mm moving along horizontal direc-
tion, field of view ¼ 20 mm × 20 mm, resolution 100 μm,
10 averages, and scan time ¼ 20 min. For in vivo mouse
brain, laser excitation pulses of 9 ns were delivered at five
wavelengths (715, 730, 760, 800, and 850 nm) in coronal orien-
tation, step size ¼ 0.3 mm moving along horizontal direction,
field of view¼ 20 mm×20 mm, 10 averages, and scan time ¼
20 min.

2.6 Magnetic Resonance Imaging

All MRI scans were performed on a 7/16 small animal MR
Pharmascan (Bruker Biospin GmbH, Ettlingen, Germany)
equipped with an actively shielded gradient capable of switch-
ing 760 mT∕m with a 80-μs rise time and operated by a
ParaVision 6.0 software platform (Bruker Biospin GmbH,
Ettlingen, Germany). A circular polarized volume resonator

was used for signal transmission, and an actively decoupled
mouse brain quadrature surface coil with integrated combiner
and preamplifier was used for signal receiving.

For imaging of phantom with fiducial marker, T1-weighted
MR imaging was performed. A 3-D volume was acquired
using fast low-angle shot sequence in combination with slice
selective excitation of a 20-mm-thick volume. The imaging
parameters were: echo time ¼ 3.493 ms, repetition time ¼
50 ms; flip angle¼ 20 deg; field of view¼ 20× 20× 30 mm3,
matrix ¼ 100 × 100 × 150, giving an isotropic spatial
resolution ¼ 200 × 200 × 200 μm3, average ¼ 1, axial orienta-
tion, and scan time ¼ 13 min 50 s.

Both the in vivo and ex vivo T2-weighted MR images of
mouse brain/head were obtained using a 2-D spin echo sequence
(Turbo rapid acquisition with refocused echoes) with
imaging parameters: RARE factor ¼ 8, echotime ¼ 36 ms,
repetition time ¼ 2627.7 ms, 6 averages, slice thickness ¼
0.7 mm, no slice gap, field of view ¼ 20 × 20 mm2, matrix ¼
512 × 512, giving an in-plane spatial resolution ¼ 39 × 39 μm2,
out-of-plane resolution ¼ 0.7 mm (slice thickness), within a
scan time ¼ 12 min 36 s. For ex vivo MRI, the whole mouse
brain was placed in a 10-mL syringe filled with perfluoropo-
lyether (Fomblin Y, LVAC 16/6, average molecular weight
2700, Sigma-Aldrich, Switzerland). For in vivo MRI, mice
were anesthetized with an initial dose of 4% isoflurane
(Abbott, Cham, Switzerland) in oxygen/air (200∕800 mL∕min)
mixture and were maintained at 1.5% isoflurane in oxygen/air
(100∕400 mL∕min). Mice were next placed in prone position
on a water-heated support to keep body temperature within
36.5°C� 0.5°C, monitored with a rectal temperature probe.

2.7 Optoacoustic Tomography Reconstruction

OAT images were reconstructed using a model-based linear
algorithm using MSOT Viewer (iThera Medical GmbH,
Germany).36 For in vivo mouse imaging data, linear unmixing
was applied to resolve signals from oxygenated and deoxygen-
ated-hemoglobin. For phantom imaging data, linear unmixing
was applied to resolve signal from gold nanoparticle. For ex vivo
brain imaging data, background image was resolved.

2.8 Evaluation of Registration

We have assessed the performance of the three registration
methods (M1, M2, and M3) using OAT and MR images of
one phantom and three mouse head/brains. The three mouse
brain registration tasks were (1) ex vivo OAT—ex vivo MRI,
(2) ex vivo OAT–in vivo MRI, and (3) in vivo OAT–in vivo
MRI. Task 2 aims to test if toolbox RegOA has a certain degree
of freedom in registering different brain regions of interest. The
registration performance was evaluated by the metrics of TRE
and EER for each pair of landmarks. TRE is defined as the
Euclidean distance between points (targets) that are used for
registration algorithm.25 EER, the fraction of Euclidean error
remaining after registration, is defined as one TRE gap between
two corresponding targets divided by their original distance
before registration.25

For phantom validation, the three inclusions were clearly vis-
ible in both OAT and MR images. The center of each inclusion
served as ground-truth position of the registration targets. For
mouse brain study, natural landmarks were manually selected
as registration targets. Five anatomical landmarks were chosen
(Fig. 4). We also tested the robustness of M3 by fixing the MR
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image and rotating the OAT image by an angle ranging from
−90 deg to 90 deg, with an incremental step of 10 deg.
Bilinear interpolation was applied for rotating the image. The
original distance, TRE, and EER for five pairs of registration
targets were calculated.

2.9 Exporting, Registration, and Comparison
with AFNI

We exported the preprocessed OAT and MR images as NIfTI
format and loaded them to the program “3DAllineate” from
the AFNI software package (http://afni.nimh.nih.gov) to register
in 2-D the OAT image to the corresponding MR image slice.
Affine transformation was performed using two passes: a coarse
pass with larger shifts followed by a fine pass to prevent local
minima. MI was selected as the similarity metric. Other param-
eters were left at the default setting.

2.10 Registration with a Brain Atlas

Spatial normalization of individual neuroimaging data by map-
ping to a standard reference atlas is commonly adopted when
analyzing datasets across multiple subjects.37,38 Here, we tested
the feasibility to register the ex vivo OAT brain image with
a widely used high-resolution volumetric atlas segmented into
62 structures based on average MRI of 40 adult C57Bl/6J mice.37

3 Results

3.1 Evaluation of Registration Accuracy

We have tested three different MI-based registration methods
(M1 to M3) using phantom with fiducial markers, as well as

ex vivo and in vivo mouse brain. Both M1 and M2 performed
poorly; the transformed OAT images were either highly dis-
torted in the corner [in Figs. 5(b), 5(g), and 5(l)] or misaligned
to a false anatomical structure [in Figs. 5(m), 5(q), and 5(r)].
Compared with M1 and M2, the first step of M3 has achieved
higher success rate of registration already based on visual evalu-
ation. The selected target pairs, either the fiducials in the phan-
tom [Fig. 5(d)] or the landmarks in the brain [Figs. 5(i), 5(n),
and 5(s)], were matched accurately in OAT and MR images.
The second step of M3 [Figs. 5(e), 5(j), 5(o), and 5(t)] led to
further significant improvements of registration accuracy when
the registered object contains heterogeneous inner structure.
For example, in the case of in vivo brain registration, the lower
boundary of brain was better aligned in M3-step 2 [Fig. 5(t)]
than in M3-step 1 [Fig. 5(s)].

To quantitatively assess the accuracy of registration methods
(M1 to M3), TRE and EER were computed for the four cases
(Table 1). M1 results in high value of TRE and EER values
(Fig. 5, second column), whereas M2 registration using prepro-
cessed data yielded lower mean values of TRE and EER.
However, the standard deviation of EER was still large com-
pared with the mean value of the respective metrics. For exam-
ple, the M2 EER for phantom study was 105.22� 819.54 with
a standard deviation 8 times larger than the mean value. This
indicates that at least one of the registration pairs was signifi-
cantly misaligned [as observed in Fig. 5(c)]. Both steps 1 and
2 of M3 performed better than M1 andM2, with decreased mean
values and standard deviations of TRE and EER. M3-step 2
further decreased TRE and EER based on the M3-step 1.
For instance, in the case of ex vivo brain registration, the
standard deviation of TRE and EER decreased from 5.20 and
42.87 to 2.81 and 23.52, respectively, after step 2. The in vivo

Fig. 4 Registration targets in four datasets for assessing the performance of different registration meth-
ods. Three inclusions served as registration targets for phantom study, and five natural landmarks were
selected as targets based on the anatomy of in vivo and ex vivo mouse brain. The upper row shows
the MR images of (a) phantom, (b) ex vivo brain, (c) segmented brain from in vivo case, and (d) in vivo
head of mouse, with red crosses indicating the targets. The bottom row shows the paired OAT images of
the upper row (e) phantom, (f) and (g) ex vivo brain, and (h) in vivo head of mouse, with blue crosses
indicating the targets.
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Fig. 5 Comparison of different registration methods in different registration tasks. Rows (1) to (4) show
the overlaid OAT (“HOT” scale) and MRI (gray) images of four tasks: (1) phantom, (2) ex vivo OAT–
ex vivo MRI mouse brain, (3) ex vivo OAT–in vivo MR images of mouse brain, and (4) in vivo OAT–
in vivo MRI mouse brain. The columns (left to right) display before registration and resulting images
using M1, M2, and M3 registration, respectively. M1 and M2 resulted in misalignment due to the inter-
ference from the background noise and overdependence on the texture of inner structure obtained
from different modalities, having different interpretation of intensity values.

Table 1 Registration evaluation by measuring TRE and EER for different registration methods (M1, M2, and step 1 and step 2 of M3) and different
cases (phantom, ex vivo brains, ex vivo/in vivo brains, and in vivo brains). The numbers of target pairs (T. pair) and the original distance for target
pairs are given to better compare them to the TRE after registration. Data were presented as mean value ± standard deviation.

Phantom
Brain ex vivo

OAT–ex vivo MRI
Brain ex vivo

OAT–in vivo MRI
Brain in vivo

OAT–in vivo MRI

T. pair Number 3 5 5 5

Original distance 50.79� 21.74 32.31� 18.47 124.51� 108.91 52.26� 20.17

M1 TRE 557.12� 43.17 669.66� 207.62 603.07� 206.07 56.25� 11.14

EER (%) 1330.72� 819.54 3138.73� 2475.35 1942.19� 2792.27 121.37� 52.27

M2 TRE 45.04� 27.58 15.80� 7.90 115.18� 86.79 28.19� 18.67

EER (%) 105.22� 819.54 71.65� 2475.35 143.14� 2792.27 63.28� 52.27

M3-step 1 TRE 18.97� 12.00 9.06� 5.20 114.89� 107.05 17.11� 11.36

EER (%) 46.41� 37.35 37.91� 42.87 79.60� 31.02 32.51� 14.96

M3-step 2 TRE 21.78� 11.09 9.34� 2.81 115.02� 107.69 10.84� 8.34

EER (%) 52.70� 39.03 36.42� 23.52 75.27� 32.37 19.70� 11.19
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brain registration showed a decrease in both mean value and
standard deviation for TRE and EER from steps 1 to 2
(TRE: 17.11� 11.36 to 10.84� 8.34; EER: 32.51� 14.96 to
19.70� 11.19).

3.2 Evaluation of Registration Robustness

The robustness of the registration method M3 was evaluated by
rotating OAT image relative to the MR image by an angle rang-
ing from −90 deg to 90 deg [Figs. 6(c)–6(f)]. Upon rotating
the OAT relative to the MR images, the initial distance varies
in a sinusoidal manner [Fig. 6(a)]. Nevertheless, following the
two-step registration procedure, the dependence of TRE (blue)
on the rotation angle is weak with values <40 pixels, showing
a significant decrease compared with the original distance.
The second metric EER displayed a stronger dependence on
the rotation angle than TRE, especially for the angle in the
range of 20 deg to 50 deg. Lowest value of initial distance was
observed in this range of the rotation angle, suggesting that

OAT and MRI were already well-matched and thus resulted
in high values of EER. The mean value and standard deviation
for TRE and EER over the 180 deg were 17.42� 6.38 and
22.81� 10.68, respectively.

3.3 Comparison of RegOA and AFNI

We have compared the performance of RegOA with an estab-
lished registration tool used for aligning MRI-based brain
data, AFNI. Accordingly, we have exported preprocessed data-
sets of the in vivo mouse brain study to AFNI and performed
AFNI inbuilt MI-based registration. MI-based registration by
AFNI [Fig. 7(a)] yielded registration results comparable to
M2 by RegOA [Fig. 7(b)]; the alignment of OAT image to
the MRI reference image was unsatisfactory, which becomes
obvious when comparing the cortical surfaces. In contrast,
the two-step M3 registration by RegOAyielded superior results,
i.e., the contour in OAT image was matched better with that of
MR image [Fig. 7(c)].

Fig. 6 Robustness test of registration method M3 at different rotational angles using in vivo OAT–in vivo
MRI mouse brain images. OAT image was rotated with an angle ranging from −90 deg to 90 deg.
(a) Variation of original distance and TRE between corresponding targets in OAT and MR images;
(b) variation of EER; (c)–(f) exemplary OAT images at −90 deg, −45 deg, 45 deg, and 90 deg of rotation;
(g)–(j) overlaid OAT/MR images after registration. Ori. Dis: original distance.
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3.4 Registration with a Brain Atlas

Instead of mapping OAT mouse brain image to its own MR
image, registering it to a standard anatomical atlas would be
helpful for analyzing large data series and use of predefined
regions of interest for quantitative analysis. Figure 8 shows
the labeled regions in the brain atlas (indicated with different
colors), MRI anatomical reference (Dorr’s), OAT image after
M3 registration, and overlaid images.

4 Discussion
The rapid deployment of OAT as stand-alone technique or as
partner in multimodal imaging approaches in combination
with modalities, such as MRI,11,17,18,39 Raman imaging,40,41

and optical coherence tomography,42 requires the development
of an OAT-tailored automated and robust image registration
method. Currently available comprehensive toolkits for auto-
mated registration focus on well-established imaging modalities,
such as CT, MRI, PET, and single-photon emission computer
tomography. Yet, methods such as AFNI and SPM cannot
be translated in a straightforward manner to OAT due to
method-specific issues in data reconstruction.43 To the best of

our knowledge, the proposed RegOA is the first automated
registration toolbox for OAT-MRI dataset alignment.

The benefits of combining PAwith MRI or CTare as follows:
MRI/CT provides (1) structural information with a higher soft
tissue contrast compared to OAT. This is particularly useful for
delineating brain regions and lesion areas in disease models, and
thus providing more accurate analysis of regional hemodynamic
and molecular data. (2) In addition, MRI is very versatile and
can deliver a variety of other measures of tissue integrity, such
as magnetic transfer rate and diffusion tensor imaging, suscep-
tibility weighted imaging for hemorrhagic transformation, and
lesions and hemodynamics, e.g., arterial spin labeling for cer-
ebral blood flow, among many others, which cannot be attained
by OAT in the same way and that can be very useful in future
studies of experimental research on brain disease models.
Limitations of MRI that can be addressed by OATare as follows:
(1) temporal resolution of MRI is not ideal for measuring fast
functional changes, such as functional changes under stimulus
and neuronal activities in the brain, which is higher in OAT;
(2) both CT and MRI are not inherently very sensitive for
detecting imaging probes whereas OAT is.

MI-based method was adopted for automated registration
for its avoidance of the time-consuming feature extraction task
and has proven its robustness in multimodal registration task.
However, a pure MI-based registration has the following draw-
backs: (1) applying MI metric becomes problematic if the inten-
sity distribution in the two datasets is very different, e.g., the
zero values presented in the subcortical region in OAT images
that do not correspond to the intensities of the same region in
MR images; (2) high sensitivity to the appearance of strong
noise or artifacts (M1 method only uses MI metric without pre-
processing); (3) only the intensity values of corresponding indi-
vidual pixels but not the texture information were taken into
account (M2 method uses MI metric with preprocessed images).
Thus, an optimal preprocessing step becomes critical for a
robust MI-based registration. In the framework of RegOA, dif-
ferent denoising strategies, Canny edge detector and Wiener
filter, were applied to OAT and MR images, respectively, to
remove different types of noise. An iterative snakes method
was applied to segment images from both OAT and MRI.
The resulting masks serve as the supportive information in
the first step of M3 registration method. The proposed two-
step MI-based method (M3) overcame the interference of the
presented noise in OAT and MR images and used the spatial
information obtained from the segmentation (mainly the boun-
dary information, as OAT is highly sensitive to the object boun-
dary). Low TRE and EER values revealed the advantages of M3
procedure.

Fig. 7 Comparison of registration results using AFNI and RegOA for ex vivo OAT–ex vivo MRI mouse
brain images. Images show the overlaid OAT (HOT scale) and MRI (gray) images after registration using
(a) AFNI MI-based, (b) M2, and (c) M3 (after step 2).

Fig. 8 Registration of OAT of mouse brain with MRI atlas and corre-
sponding segmentation. (a) MRI atlas Dorr’s C57B6J mice, (b) over-
laid OAT image, (c) labeled segmentation based on the (a), and
(d) overlaid OAT image with labeled segmentation. The regions of
cortex and hippocampus were indicated by the contour.
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The performance of RegOA was evaluated using phantom
with fiducial markers and using ex vivo and in vivo mouse
brain with anatomical landmarks. Fiducial markers containing
nanoparticles provide contrast for various imaging modality
and have been used for multimodal registration between
MRI-photoacoustic-Raman and PET-optical imaging.41,44 The
robustness of the registration method was analyzed by rotating
OAT image relative to the MRI image; the registration method
was able to correctly map the OAT to the corresponding MR
image for a wide range of starting angles. As the polyethylene
tube we used here for placing fiducial nanoprobe marker might
cause artifact, one alternative is to use MR compatible physical
fiducial with proper dimensions.

In addition to the main functionality of automated registra-
tion, RegOA also supports simple visualization of registered
datasets, exporting in NIfTI format, and mapping onto an ana-
tomical brain atlas. Herein, we summarize several potential ben-
efits RegOA brings about: (1) high-throughput OAT experiment
analysis and data sharing. The proposed framework attempts to
establish a standard OAT-MRI data processing pipeline, includ-
ing preprocessing, registration, normalization,32 and further
voxel/segment-based quantitative and correlation analysis. Such
a pipeline has been well-established in the MRI community
using SPM or AFNI but is not yet available for OAT. For
example, the oxy/deoxy-hemoglobin data could potentially be
related to data from blood oxygen level-dependent functional
MRI;45 (2) evaluating new OAT reconstruction algorithm;
(3) improvement in reconstruction algorithm for OAT image
using well-registered MR image as structural prior information;46

(4) identifying and accurate delineation of brain regions is crucial
for quantitative analysis of neuroimaging data. Hence, alignment
of molecular and physiological data to a structural reference data-
set is a prerequisite for extracting quantitative information. While
individual alignment is attractive when analyzing pathological
conditions, e.g., neurodegenerative processes and focal brain
lesions, which show a subject-specific disease course, registration
of OAT (and MRI) data to standard brain atlases will be attractive
when analyzing responses across (large) groups of subjects. This
would allow using predefined volumes-of-interest across the
whole dataset, thereby enhancing statistical rigor.

There are several limitations for this study: (1) automated
3-D registration is still suboptimal. The current two-step regis-
tration method has been only implemented and validated in 2-D.
Selection of slices for registration depends on the initial align-
ment based on anatomical reference (such as the eyes and nose)
and the thickness of each OAT/MRI slice. We also assume that
the animal holder of OAT moved along the horizontal direction,
which should be parallel to the central axis of the MR scanner
bore.8 Involuntary movements of the animal head in other direc-
tions would lead to inaccurate registration. This is currently pre-
vented by mechanical fixation of the animal’s head. A next step
would be to apply the framework of RegOA to 3-D data. Such
an approach does not require the assumption of central axis
parallelism of OAT and MRI data but is computationally more
expensive. The computational complexity for 3-D registration
can be alleviated using parallel computing.47 (2) Deformable
registration is necessary for more general cases of OAT-MRI
registration, especially whole body or certain flexible organs.20

Rigid transformation has been widely used and proven to be
robust for brain registration.14 (3) Negative or truncated zero
values of image intensity were observed in the current OAT
dataset, which may influence the similarity metric of MI. This

has been partially addressed by incorporating a segmented
mask in RegOA. A model-based image inversion algorithm,
or intensity correction with optical fluence variation,48,49 or
a backprojection algorithm assisted with multiview Hilbert
transformation50–53 can improve the image quality of OAT, min-
imize artifacts especially the bipolarity pixel values, and further
improve the registration result.

5 Conclusion
In conclusion, we developed an automated registration frame-
work for OAT-MRI brain imaging data. The major advantages
of our approach are minimal user interaction and automatic
assessment of the registration error, avoiding visual inspection
of the results, facilitating the accurate, objective, and rapid
analysis of large amounts of rodent OAT data.
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