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Abstract

Significance: There are no label-free imaging descriptors related to physiological activity of
inner retinal cells in the living human eye. A major reason is that inner retinal neurons are highly
transparent and reflect little light, making them extremely difficult to visualize and quantify.

Aim: To measure physiologically-induced optical changes of inner retinal cells despite their
challenging optical properties.

Approach: We developed an imaging method based on adaptive optics and optical coherence
tomography (AO-OCT) and a suite of postprocessing algorithms, most notably a new temporal
correlation method.

Results: We captured the temporal dynamics of entire inner retinal layers, of specific tissue
types, and of individual cells across three different timescales from fast (seconds) to extremely
slow (one year). Time correlation analysis revealed significant differences in time constant (up to
0.4 s) between the principal layers of the inner retina with the ganglion cell layer (GCL) being the
most dynamic. At the cellular level, significant differences were found between individual GCL
somas. The mean time constant of the GCL somas (0.69� 0.17 s) was ∼30% smaller than that
of nerve fiber bundles and inner plexiform layer synapses and processes. Across longer dura-
tions, temporal speckle contrast and time-lapse imaging revealed motion of macrophage-like
cells (over minutes) and GCL neuron loss and remodeling (over one year).

Conclusions: Physiological activity of inner retinal cells is now measurable in the living human
eye.
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1 Introduction

The inner retina is composed primarily of ganglion cells (GCs) whose axons, somas, and den-
drites locate to three distinct retinal layers: nerve fiber layer (NFL), ganglion cell layer (GCL),
and inner plexiform layer (IPL), respectively. The central role of GCs in processing retinal
images captured by photoreceptors1 has been extensively studied since the first observations
of GCs by Cajal et al.2 However, much remains unknown about the GC neural circuitry and
its vulnerability to aging and disease, in part because of our inability to observe the activity
of these highly translucent cells in the living human eye.3–8

Recent progress in high-resolution, high-contrast imaging has overcome the translucency
barrier, enabling visualization of individual retinal neurons—most notably GCs—in living
human retina.9–11 In particular, adaptive optics optical coherence tomography (AO-OCT) allows
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three-dimensional (3-D) imaging of the individual cells and structures that comprise the inner
retina.10,12,13 While successful, such imaging has not revealed the physiological activity of these
cells. Here we investigate a method that does, by extending AO-OCT to detect temporal cellular
changes.14,15 We observe temporal dynamics in the same patch of retinal tissue at dramatically
different timescales, from a fraction of a second (e.g., intracellular soma dynamics) to one year
(e.g., soma loss and migration). We also observe temporal dynamics on the intermediate scale of
minutes, most notably the motility of macrophage-like cells—bright, irregular star-shaped cells
that sparsely cover the surface of the inner limiting membrane (ILM).

We use a new correlation analysis method to characterize the fast temporal dynamics of the
inner retinal layers (NFL, GCL, and IPL) and individual retinal nerve fiber bundles (RNFBs) and
GCL somas. Time-lapse imaging and a temporal speckle contrast method related (but not iden-
tical) to that used in OCT angiography allow us to characterize the intermediate dynamics of
macrophage-like cells and GCL somas that occur over minutes. Finally, we use pairs of images
acquired one year apart to demonstrate the slow dynamics that occur over a year (neuron loss and
remodeling). The ability to measure in vivo a wide range of fundamentally different dynamics in
the same tissue using the same AO-OCT system reflects the power of the method we have
developed.

2 Methods

Description of methods is in three sections. Section 2.1 describes the Indiana AO-OCT imaging
system used in this study. Section 2.2 lays out the imaging protocol, experimental procedures,
and subject information. Section 2.3 describes the postprocessing methods that we developed for
visualizing and quantifying the temporal dynamics of the targeted inner retinal structures and
cells. Details of our postprocessing methods are presented in Appendices A–G.

2.1 Indiana AO-OCT System

The Indiana AO-OCT system used in this study is described in detail elsewhere.16,17 Importantly,
the fiber-based system operated at a center wavelength of 790 nm and bandwidth of 42 nm
(superluminescent diode, SM fiber output power of 20 mW, BLMD-S-HP3, Superlum,
Ireland), with a theoretical axial resolution of 4.7 μm in tissue (n ¼ 1.38) and lateral resolution
of 2.4 μm (beam diameter of 6.7 mm at the eye pupil). We used the system’s two-camera mode
to achieve an image acquisition speed of 500K A-scans/s (Kocaoglu et al.17 described the avail-
able camera modes). We focused the system on the GCL to maximize the signal strength and
image sharpness of this layer. Optical power delivered to the eye was below 430 μW and more
than an order of magnitude below the maximum permitted by American National Standards
Institute18 for all our imaging protocols, as described next.

2.2 Imaging Protocol

Two subjects were recruited for the study (see Table 1). Neither had a history of ocular disease.
The older subject was being treated for ocular hypertension (above normal ocular pressure) but
was otherwise normal. All protocols adhered to the tenets of Helsinki Declaration and were
approved by the Institutional Review Board of Indiana University. We obtained written informed
consent after explaining the nature of the study and possible risks. Prior to the imaging session,
one drop of Tropicamide 0.5% was administered to the right eye for mydriasis and partial

Table 1 Subject information.

Subject Agea Axial eye length (mm) Spherical equivalent power

S1 27 24.0 0 D

S2 50 25.4 −2.5 D

aSubject age at first imaging session.
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cycloplegia. Axial eye length was measured with an IOLMaster 500 (Zeiss, Oberkochen,
Germany) and used to correct for axial length differences in scaling of the retinal images follow-
ing the method of Bennett et al.19

We acquired AO-OCT volume videos 12 deg temporal to the fovea. We chose this eccen-
tricity because GCL soma sizes at the macular edge are larger and more variable,10,20,21 making it
easier to compare cell structure and temporal dynamics. Imaging protocols for the two experi-
ments are summarized in Table 2. Imaging protocol Awas used to track fast temporal dynamics
up to 2.6 Hz (Nyquist frequency of the 5.3 Hz volume acquisition rate) over a 1-deg retinal field
of view and with 1-μm∕A-scan lateral spacing. Imaging protocol B was used to characterize
intermediate and slow temporal dynamics occurring over time durations of minutes (maximum
of 16 min) and 1 year (352 days for subject S1 and 364 days for subject S2), trading off speed for
a 2× increase in imaging area (1.5 deg×1.5 deg) while maintaining a sufficient volume rate to
support effective 3-D image registration. All videos were time-stamped to confirm their acquis-
ition times and to combine them for the three studies: fast, intermediate, and slow temporal
dynamics.

2.3 Postprocessing

AO-OCT volumes were registered in all three dimensions with subcellular accuracy—a process
accelerated by our custom 3-D B-scan registration algorithm that registers individual fast B-scan
images to a reference volume using 3-D cross correlation.22 Assessment of cellular structural
information was enhanced by averaging registered AO-OCT volumes to reduce noise while
preserving retinal content. Temporal dynamics of inner retinal layers were assessed on three
different timescales: 0.38 to 2.25 s (fast), 0 to 16 min (intermediate), and 1-year interval (slow).
Each timescale required different postprocessing as described below.

2.3.1 Fast dynamics

To characterize the fast temporal dynamics (over seconds), we developed a temporal autocor-
relation method (Appendix A) that quantifies temporal change in the spatial intensity pattern
within an estimation window with center pixel coordinates ~rc ¼ ðX; Y; ZÞ and dimensions
ðNx; Ny; NzÞ. Given a sequence of T volume images we have a T-element time series in which
each value is an ðNx × Ny × NzÞ-element vector. We compute a correlation coefficient function
ρð ~rc;ΔtÞ [Eq. (4) of Appendix A] between pairs of vectors at times t and tþ Δt. This function is
observed to decrease monotonically with Δt [see Figs. 1(f) and 1(l)]. The time constant τ [Eq. (5)
of Appendix A] quantifies the rate of decrease. The method is considerably more complex than
the conventional definition of the autocorrelation coefficient [Eq. (1) of Appendix A] in order to
mitigate the effects of several key sources of error that are known to degrade the accuracy and
robustness of correlation measurements: (1) biases generated by static retinal structure in the
images [Eq. (2) of Appendix A], (2) bias and uncertainty generated by typical sources of meas-
urement noise [β term in Eq. (4) of Appendix A], (3) biases generated by information loss caused
by eye motion, (4) error in fitting an exponential decay to the correlation [Eq. (5) of
Appendix A], and (5) bias generated by residual eye motion after image registration
[Eq. (6) of Appendix A]. Based on prior studies23–26 we assumed optical roughness of the imaged

Table 2 AO-OCT acquisition parameters for retinal imaging.

Imaging
protocol

Image field
of view (deg)

No. of A-scans
per volume

Volume
acquisition
rate (Hz)

No. of volumes
per video

Video
acquisition
interval (s)

No. of videos per
retinal location

A 1 × 1 300 × 300 5.3 12 60� 46 23

B 1.5 × 1.5 450 × 450 2.4 11 or 12 45� 25 15 to 20

Ca 0.75 × 0.75 150 × 150 20 50 48� 51 30

aProtocol used for bias correction of residual eye motion (see Appendix E).
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retinal layers to be greater than the imaging wavelength, i.e., that the speckle patterns in our
images were fully developed. This assumption implies that time constant τ must be independent
of tissue optical roughness, a point we revisit in Sec. 4.

Correlation coefficients were computed from volume videos acquired with imaging protocol
A and characterized over the range of 0.38 to 2.25 s (determined by the protocol’s 5.3 Hz volume
acquisition rate and 2.25 s video length). To evaluate the trade-off between signal-to-noise (SNR)
ratio and spatial resolution, we compared time constants for different retinal layers and tissue
types using estimation windows of three different sizes.

The first estimation window size (window #1) covered the entire lateral extent of the volume
image (typically 300 × 300 pixels or equivalently 300 × 300 μm2) and was 7 pixels (6.6 μm)
deep, thus including most of each retinal layer (NFL, GCL, or IPL) in depth without extending
beyond it. This inclusion of hundreds of thousands of pixels yielded the most accurate time
constant estimates (see Fig. 10 in Appendix A). On the other hand, each layer is composed
of cellular structures of different tissue types that might have their own unique time constants,
which this large window size could not differentiate.

To assess the dynamics of specific tissue types, we used a smaller estimation window size
(window #2). It consisted of a 4 × 4 × 7 pixel ðX; Y; ZÞ stack (4 × 4 × 6.6 μm3). We used this
smaller window to compute a separate value of the time constant τ for each XY location at a fixed
Z (depth) corresponding to the center of each retinal layer. This permitted visualization of spatial
variation in temporal activity across the lateral extent of each layer. This small window size
results in noisier measurements and a reduced τ because noise decorrelates. To improve the

Fig. 1 AO-OCT method reveals cellular structure and temporal dynamics of the three inner retinal
layers of subjects S1 (top) and S2 (bottom). (a) and (g) Single and (b) and (h) projected B-scans
show cellular and laminar reflections, respectively. Note the three hyper- and two hypo-reflective
bands that compose the IPL of the inner retina, a profile we commonly observe with AO-OCT when
focused at the inner retina. Labels indicate retinal depth (NFL, GCL, and IPL) at which the en face
images in (c), (i), (d), (j), (e), and (k) were extracted. (f) and (l) Full layer (window #1) temporal
correlation coefficients ρð ~r c ;ΔtÞ are shown for the three retinal layers and 95% CIs (colored bands
about each trace).
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SNR ratio of our method without sacrificing tissue specificity, we averaged τ across pixels of the
same nominal tissue type, which were semiautomatically determined based on differences in
tissue reflectance: NFL bundles, GCL somas, GCL vasculature, and IPL synapses and processes
(without vasculature).

The final estimation window size (window #3) was based on the smallest size of GCL somas
in our images (7 μm) and used to more precisely evaluate their temporal dynamics. We selected
pixels within a 7 × 7 × 7 pixel volume (corresponding to 7 μm in each lateral dimension and
6.6 μm in depth) centered on the soma. The volumetric center of the soma was manually iden-
tified using a customized graphic user interface display window that presents real-time en face
(XY) and cross-sectional (XZ and YZ) slices of the AO-OCT volume image with cursor position
superimposed.15 The 7 × 7 × 7 pixel window size captured intracellular dynamics while avoid-
ing contributions from adjacent structures in the GCL such as glial processes, vasculature, and
extracellular space.

2.3.2 Intermediate dynamics

To characterize the intermediate temporal dynamics (across minutes), we constructed time-lapse
image sequences of the same retinal patch from AO-OCT images acquired at different time
points using imaging protocol B. A time-lapse sequence was generated for each time interval
(0 to 5, 5 to 11, and 11 to 16 min for subject S1; 0 to 4, 4 to 8, 8 to 13 min for subject S2) and the
motion of each pixel was quantified using temporal speckle contrast, defined as the ratio of the
standard deviation (SD) of the reflectance amplitude to its mean (see Appendix B). We tested this
method on GCL somas and macrophage-like cells that were observed 5 μm above the ILM.

2.3.3 Slow dynamics

We characterized the slow temporal dynamics (across a year) by reimaging the same retinal patch
1 year later using imaging protocol B. Image volumes from the two time points were registered to
each other using a two-step process: first, rigid displacements of the volumes were corrected
using the MATLAB (The MathWorks, Natick, 2017) function imregtform, which iteratively opti-
mizes image similarity using Mattes’ metric.27 Second, nonuniform pixel-level displacements
(image warp) were corrected using the MATLAB function imregdemons, which iteratively opti-
mizes local image similarities using diffeomorphic demons algorithm.28,29 We then analyzed
the cellular-level changes between registered volumes over the intervening year. This involved
visually inspecting the registered images in rapid alternation and detecting difference in cell
locations.

3 Results

3.1 Fast Temporal Dynamics of Inner Retinal Layers, Isolated RNFBs, and
Individual GCL Somas

Figure 1 shows the cellular structures and corresponding fast temporal dynamics (correlation
coefficients) of the inner retinal layers (NFL, GCL, and IPL) of the two subjects as obtained
from AO-OCT. Individual GCL somas and RNFBs are clearly delineated in the intensity images
[Figs. 1(d) and 1(j)] and [Figs. 1(c) and 1(i)], respectively. Vasculature (capillaries, arterioles,
and venules) are also evident in all three retinal layers. Temporal correlation coefficients
ρð ~rc;ΔtÞ of the entire layers computed using window #1 (300 × 300 × 7 pixel stack) are shown
in Figs. 1(f) and 1(l). NFL and IPL exhibit similar temporal dynamics, whereas GCL is clearly
faster. The full-layer correlation decay time constants τ [Fig. 3(a)] confirm that GCL dynamics
are ∼33% faster than those of NFL and IPL.

A two-way analysis of variance (ANOVA) tested for variations in τ with retinal layer and
subject. We found a main effect of retinal layer to be significant, Fð2;470Þ ¼ 2040, p < 0.001,
where 2 is the degrees of freedom of the three retinal layers and 470 is the degrees of freedom of
the 476 measurements with eight total number of levels (two subjects, three layers, and three
interactions). However, this main effect was qualified by a significant interaction between the
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retinal layer and subject, Fð2;470Þ ¼ 12, p < 0.001. There was no main effect of subjects,
Fð1;470Þ ¼ 0.1, p ¼ 0.75. Bonferroni-adjusted comparisons indicated that the time constant of
GCL was significantly faster than that of NFL [p < 0.001, 95% confidence interval (CI) of the
difference ¼ −0.38 to −0.32 for subject S1; p < 0.001, 95% CI of the difference ¼ −0.43 to
−0.37 for subject S2] and IPL (p < 0.001, 95% CI of the difference ¼ −0.39 to −0.34 for sub-
ject S1; p < 0.001, 95% CI of the difference ¼ −0.39 to −0.33 for subject S2) of both subjects.
Repeated measures on the same retinal patches gave the same results with retina layer (see
Appendix G).

We assessed specific tissue-type dynamics by computing the autocorrelation using a small
estimation window centered on each XY pixel location of each retinal layer (window #2—a 4 ×
4 × 7 pixel stack as described in Sec. 2). The resulting spatially resolved time constants for the
three layers and two subjects are shown in Figs. 2(a)–2(f) as grayscale maps with corresponding
histograms in Fig. 2(g). Time constants averaged over pixels of each retinal layer are plotted in
Fig. 3(b) and over specific tissue types within a layer in Fig. 3(c).

Fig. 2 Time constants of inner retinal layers of subjects S1 (top row) and S2 (bottom row). Time
constant images are shown as grayscale maps at depths of the (a) and (d) NFL, (b) and (e) GCL,
and (c) and (f) IPL. Grayscale values ranged from 0.3 s (black) to 1.4 s (white). Color-coded histo-
grams in (g) depict time constant distributions of the three layers. Note that time constants in (g)
and main text exclude the region enclosed by the green dashed rectangular owing to unsatisfac-
tory image registration caused by the large vessel.

Fig. 3 Time constants vary between retinal layer and tissue type. Time constants are shown for
(a) and (b) three inner retinal layers and (c) specific tissue types within the layers using windows #1
and #2 and our AO-OCT volume data acquired with imaging protocol A. Error bars denote �1 SD
across the retinal layer or tissue type.
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As expected, interlayer and intersubject differences show the same trends as obtained with
the larger window size (window #1). However, because the smaller amount of signal pooling
inherent in the smaller window #2 produced measurements with more (temporally decorrelated)
noise, time constants were reduced overall by about 20%. This prevents comparison across
different window sizes, but the smaller window produces spatially resolved time constant mea-
surements and allows us to compare the dynamics of different tissue types in the same layer.

A two-way ANOVA tested for variations in τ with tissue type and subject. Both main effects
were significant: tissue type {Fð3;1e5Þ ¼ 3.4e3, p < 0.001} and subject {Fð1;1e5Þ ¼ 143,
p < 0.001}. However, these main effects were qualified by a significant interaction between
the two, Fð3;1e5Þ ¼ 19, p < 0.001. Bonferroni-adjusted comparisons indicated that time con-
stant of GCL vasculature was significantly faster than that of RNFBs {p < 0.001, 95% CI of the
difference ¼ −0.53 to −0.46 for subject S1; p < 0.001, 95% CI of the difference ¼ −0.55 to
−0.47 for subject S2}, that of IPL synapses and processes (without vasculature) {p < 0.001,
95% CI of the difference ¼ −0.41 to −0.35 for subject S1; p < 0.001, 95% CI of the
difference ¼ −0.37 to −0.30 for subject S2}, and that of GCL somas {p < 0.001, 95% CI of
the difference ¼ −0.10 to −0.03 for subject S1; p < 0.001, 95% CI of the difference ¼ −0.09 to
−0.02 for subject S2} of both subjects.

We assessed individual GCL soma dynamics by computing the autocorrelation using a small
estimation window centered on each soma (window #3—a 7 × 7 × 7 pixel stack as described in
Sec. 2). Figure 4 shows the results, color-coded and superimposed on the corresponding reflec-
tance amplitude image. As seen in the Figs. 4(c) and 4(f) histograms, the time constant distri-
bution is nearly unimodal with a mean and SD of 0.63� 0.12 s for subject S1 and 0.74� 0.12 s

for subject S2 but positively skewed (skewness ¼ 1.2 and 1.1) and leptokurtic (kurtosis ¼ 7.0

and 5.3).

3.2 Intermediate Temporal Dynamics of Macrophage-Like Cells at the ILM,
Somas in the GCL, and Vasculature Perfusion

Figures 5 and 6 illustrate the sensitivity of our method to temporal dynamics of macrophage-like
cells, GCL somas, and vasculature perfusion over time durations of minutes. Figures 5(a), 5(b),
6(a), and 6(b) show time-lapse image triplets inserted into separate color channels of a single
RGB image. Subtle movements of cells appear as color changes at the level of individual pixels

Fig. 4 Time constants vary between GCL somas of both subjects: S1 (top) and S2 (bottom).
(a) and (d) Registered and averaged reflectance amplitude images of the GCL reveal a contiguous
mosaic of GCL somas disrupted only by capillaries. (b) and (e) Correlation time constants were
computed for individual somas using window #3 and superimposed as semitransparent false
colors as defined in (c) and (f) histograms. Note some time constant values in (b) and (e) are
superimposed on capillaries and on each other as somas at these locations lie at a different
depth than that of the images in (a) and (d), respectively.
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(1 pixel ¼ 1 μm), whereas white/black pixels indicate absence of motion (see figure caption, for
details). The sequence of time-lapse images of the macrophage-like cells, as shown in Figs. 5(c)
and 6(c) and the associated videos (Videos 1 and 2), further highlights the dynamics of these
cells. A more quantitative and sensitive assessment of motion in terms of speckle contrast is
given in Figs. 5(d) and 6(d), revealing activity over the entire footprint of the macrophage-like
soma and processes. Figures 5(e) and 6(e) depict the expected result that speckle contrast high-
lights those vessels that are perfused and demonstrates good mapping to the vascular structure in
the intensity images in Figs. 5(b) and 6(b).

Delineation of the macrophage-like cells for subject S1 was more difficult due to uneven ILM
topography, a more reflective ILM and NFL located closer to the macrophage-like cells, and
reduced image quality. The stronger ILM reflection in the younger subject (S1) is consistent
with that expected in younger eyes.30 Despite these difficulties, we observed similar motion
of the macrophage-like cells in both subjects.

3.3 Slow Temporal Dynamics of Macrophage-Like Cells, RNFBs, and
GCL Somas

Figures 7 and 8 illustrate the capability of our method to assess slow temporal dynamics of
macrophage-like cells and GCL somas by depicting pairs of images of the same patch of retina
acquired 1 year apart. The associated videos (Videos 3 and 4) visually highlight the differences
by presenting the images in rapid alternation. In contrast to the subtle motility-related changes
that occur in macrophage-like cells over minutes (Figs. 5 and 6), the changes over a year are vast
[Figs. 7(a), 7(e), 8(a), and 8(e)]. Macrophage-like cells appear to have been replaced between
images. These cells are too active to be assessed at this timescale. In contrast, the intricate web of

Fig. 5 Testing for temporal dynamics of macrophage-like cells, GCL somas, and vessels over a
time duration of minutes using (a)–(c) time-lapse imaging and (d) and (e) temporal speckle contrast
of the same retinal patch of subject S1. Color-composite en face images of (a) macrophage-like
cells at 5-μm vitreal of the ILM and (b) GCL somas and vessels are constructed by assigning each
RGB channel to an image acquired at a different time point. Thus, colored pixels in images indicate
time-lapse changes. (c) Magnified view of a macrophage-like cell in the red box of (a) and color
channels (i.e., time points) displayed separately. The sequence of time-lapse images is shown in
Video 1 and further substantiates the movement of macrophage-like somas and processes.
Cellular dynamics and blood flow in (a) and (b) are quantified on a more local spatial scale using
the temporal speckle contrast metric as shown in (d) and (e), respectively (Video 1, MPEG, 0.8 MB
[URL: https://doi.org/10.1117/1.NPh.7.1.015013.1]).
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Fig. 7 Pairs of AO-OCT images of the same patch of retina 1 year apart in subject S1 (top: base-
line, bottom: 1 year later). En face images were extracted (a) and (e) 5-μm vitreal of the ILM where
macrophage-like cells were found to reside, (b) and (f) within NFL to visualize the intricate web of
RNFBs, and (c) and (g) within GCL to visualize GCL somas and vasculature. (d) and (h) Magnified
view of GCL somas in the red box of (c) and (g), respectively. Video 3 highlights differences
accrued over the 1-year interval by alternating between the two en face AO-OCT images
(Video 3, MPEG, 2.1 MB [URL: https://doi.org/10.1117/1.NPh.7.1.015013.3]).

Fig. 6 Testing for temporal dynamics of macrophage-like cells, GCL somas, and vessels over a
time duration of minutes using (a)–(c) time-lapse imaging and (d) and (e) temporal speckle contrast
of the same retinal patch of subject S2. Color-composite en face images of (a) macrophage-like
cells and (b) GCL somas and vessels are constructed by assigning each RGB channel to an image
acquired at a different time point. (c) Magnified view of two macrophage-like cells in the red box of
(a) and color channels (i.e., time points) displayed separately. The sequence of time-lapse images
is shown in Video 2 and further substantiates the movement of macrophage-like somas and proc-
esses. Yellow arrows indicate a nonperfused vessel in the GCL. Cellular dynamics and blood flow
in (a) and (b) are quantified on a more local spatial scale using the temporal speckle contrast
metric as shown in (d) and (e), respectively (Video 2, MPEG, 0.6 MB [URL: https://doi.org/10
.1117/1.NPh.7.1.015013.2]).
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RNFBs in Figs. 7(b), 7(h), 8(b), and 8(h) appears stable over the whole year. Figures 7(c), 7(d),
7(g), 7(h), 8(c), 8(d), 8(g), and 8(h) demonstrate that we can also reimage the same patch of
GCL somas a year later with striking one-to-one correspondence of somas and vasculature.
Remarkably, there is little change in the cellular details of the GCL over this interval, indicating
that the cell network is highly stable.

4 Discussion

4.1 Fast Temporal Dynamics (Seconds)

4.1.1 Characterizing fast temporal dynamics

In the first part of this study, we characterized the fast temporal dynamics of the inner retina on
three different spatial scales: (1) entire retinal layers, (2) structures of specific tissue types within
the retinal layers, and (3) individual GCL somas. We quantified the dynamics in terms of cor-
relation coefficients and time constants using a new correlation method (Appendix A) in
conjunction with three averaging windows (denoted windows #1, #2, and #3) that defined the
three spatial scales.

The largest averaging window (window #1: 300 × 300 × 6.6 μm3) permitted us to separate
the contributions of the individual layers (NFL, GCL, and IPL) and to achieve exceedingly small
95% CIs, as shown in Figs. 1(f) and 1(l). Across the two subjects, average time constants, τ, were
1.12� 0.02 s, 0.74� 0.01 s, and 1.10� 0.02 s (mean� 95%CI) for the NFL, GCL, and IPL,
respectively [Fig. 3(a)]. As evident in these figures, the GCL was significantly more dynamic
(∼33% faster) than the NFL and IPL (p < 0.001).

Dynamics more specific to tissue type were obtained with smaller window #2
(4 × 4 × 6.6 μm3) with the results given in Figs. 2, 3(b), and 3(c). As expected, the fast temporal
dynamics of blood flow in the vasculature and their corresponding shadows produced the small-
est time constants (darkest portions of the τ images). The τ over only the segmented vasculature
in GCL was 0.46� 0.30 s (mean� SD), close to the shortest time duration our method can

Fig. 8 Pairs of AO-OCT images of the same patch of retina 1 year apart in subject S2 (top: base-
line, bottom: 1 year later). En face images were extracted (a) and (e) 5-μm vitreal of the ILM where
macrophage-like cells were found to reside, (b) and (f) within NFL to visualize the intricate web of
RNFBs, and (c) and (g) within GCL to visualize GCL somas and vasculature. (d) and (h) Magnified
view of GCL neurons in the red box of (c) and (g), respectively. The arrow in the top magnified
image points to a soma that is missing 1 year later. Arrow in the bottom magnified image points to
the same retinal coordinates and reveals that the surrounding somas migrated into the void left by
the missing soma. No other somas were found missing. Video 4 highlights differences accrued
over the 1-year interval by alternating between the two en face AO-OCT images (Video 4, MPEG,
2.2 MB [URL: https://doi.org/10.1117/1.NPh.7.1.015013.4]).
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resolve (0.38 s due to the 5.3-Hz volume acquisition rate in imaging protocol A). This suggests
that the actual τ for the vasculature may fall outside our measurement range. The RNFBs
were the most stable, appearing white in the figure and yielding the largest time constants
(1.05� 0.22 s over segmented RNFBs), followed by the IPL synapses and processes
(0.91� 0.23 s with vasculature contributions excluded) and the GCL somas (0.62� 0.20 s with
vasculature contributions and intercellular space excluded).

Histograms of the three time-constant images obtained using window #2 are shown
in Fig. 2(g) with modes for NFL, GCL, and IPL of 0.89� 0.19, 0.55� 0.13, and
0.89� 0.17 s for subject S1 and 0.87� 0.20, 0.59� 0.15, and 0.91� 0.17 s for subject S2,
respectively. While some of this variance is attributable to noise, the vast majority of the pixels
in the spread had an intensity >5 dB above the noise floor. Thus we interpret these as signal and
attribute them to differences in temporal dynamics of the tissue. Our method is therefore sensi-
tive enough to measure local variations in dynamics within a single retinal layer.

Finally, we assessed dynamics of individual GCL somas using window #3 (7 × 7 × 7 pixels)
centered on each GCL soma. As seen in Fig. 4, the mean time constants (0.63 s for subject S1
and 0.74 s for subject S2) are consistent with those from the GCL soma measurements shown in
Fig. 3(c) using window #2. The ∼3× difference between the least and most active GCL somas
(τ ∼ 0.4 to 1.0 s for subject S1 and 0.5 to 1.3 s for subject S2) is notably larger than the 95% CI of
our measurement (∼0.05 for subject S1 and ∼0.07 for subject S2), indicating that we can detect
differences in activity between somas.

We tested for correlations between soma activity and other soma parameters measurable
in our AO-OCT volumes, namely size and reflectance. Soma size is of particular interest as
it is a distinguishing feature of GC subtype (e.g., midget GC somas are smaller than parasol
GC somas)10,20,21 at retinal eccentricities outside the fovea—such as the 12-deg eccentricity
in this study. Figure 9 shows the resulting correlations. The time constant shows a weak positive
correlation with soma radius, but it is significant for only one of the two subjects (R2 ¼ 0.01,
p ¼ 0.19 for subject S1 and R2 ¼ 0.03, p ¼ 0.006 for subject S2). Thus, smaller somas do not
particularly exhibit slower or faster dynamics compared to larger somas, at least over the tem-
poral range that we tested (0.38 to 2.25 s).

The time constant exhibits a weak but significant correlation with soma reflectance
(R2 ¼ 0.19, p < 0.001 for subject S1 and R2 ¼ 0.08, p < 0.001 for subject S2). Thus, somas
with greater activity (smaller τ) are generally less reflective (amplitude/pixel measured), perhaps
suggestive of differences in the concentrations and distributions of organelles that move about
within these cells. Finally, the strongest correlation we observed was between soma radius and

Fig. 9 Correlation matrices of three GCL soma parameters measured in AO-OCT images: radius,
reflectance amplitude, and time constant. Plots contain 279 and 268 somas for subjects (a) S1 and
(b) S2, respectively. The histograms on diagonal entries are the soma radius, reflectance ampli-
tude, and time constant distributions. Red lines are linear regression fits. R2 and p denote the
coefficient of determination and p-value.
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reflectance. This positive correlation was moderate to strong and statistically significant in both
subjects (Pearson, R2 ¼ 0.17, p < 0.001 for subject S1 and R2 ¼ 0.48, p < 0.001 for subject
S2), meaning the larger somas are generally more reflective than the smaller somas. This result
is consistent with our previous finding.10

4.1.2 Comparison to other retinal studies using speckle decorrelation

We know of no other study that has reported temporal correlation measurements of the inner
retinal layers in the living human eye. It is, therefore, difficult to compare our measurements to
the literature due to differences in the state of the tissue (in vivo versus ex vivo), species, retinal
tissue type, and imaging and processing methods. These differences also confound attribution of
our correlation measurements to subcellular activity. Nevertheless, a few comparisons to the
literature are made.

The study most similar to ours, by Thouvenin et al.,31 measured the intracellular dynamics
using correlation with full-field OCT of in vitro macaque and mouse retina. For macaque, tem-
poral dynamics of 1 to 2 s or more were prevalent in RNFBs and IPL, whereas quicker dynamics
of less than 1 to 2 s were dominant in GCL. They also observed that the dynamics of somas were
faster than those of their surroundings. Our in vivo measurements in human showed the same
trends with faster dynamics in the GCL than in the NFL and IPL and higher activity in GCL
somas than in their surroundings. However, our measured dynamics were consistently twice as
fast as theirs, perhaps due to differences in the measuring systems, experimental protocols, or
state of the tissue (in vivo compared to ex vivo).

Lee et al.32 measured the intracellular dynamics of retinal GCs in extracted mouse retina
using dynamic light scattering (DLS) OCT. They quantified the dynamics in these cells in terms
of a diffusion coefficient that they reported as 1 to 4 μm2∕s. To compare, we followed Berne and
Pecora33 by estimating an equivalent diffusion coefficient using the measured time constants of
our GCL somas in Fig. 4 (see Appendix F). Based on this, the diffusion coefficient of our GCL
somas was 8.0� 1.3 μm2∕s (σ2i ∕2), comparable but higher than that reported by Lee et al. We
also computed the diffusion coefficients of RNFBs and IPL synapses and processes using the
time constants in Fig. 2 (resulting in 5.3 and 6.2 μm2∕s, respectively) but have no measurements
in the literature to compare to.

Speculation surrounds the attribution of these tissue dynamics. Thouvenin et al.31 suggested
that the dynamics they observed arise from the active transport of organelles in the cells and
possible cell membrane fluctuations and surface remodeling. In particular, the cytoplasm may
provide a strong dynamic, owing to the trafficking of many organelles there. Similar to
Thouvenin et al., Lee et al.32 suggested that their dynamics attribute to the intracellular motion
of relatively large organelles (0.1 to 10 μm in size, which covers the primary cell organelles).
Activity-induced osmotic swelling may be another, which can occur locally within subcellular
components (soma, dendrites, and axons). In photoreceptor cell outer segments, for example,
growing evidence points to swelling as the dominating physical response of these cells.34–36

Given the general similarity of our in vivo measurements to the ex vivo ones of Thouvenin et al.
and Lee et al. and the similarity of imaging methods, we expect our measurements to be sensitive
to the same intracellular dynamics.

In other studies, Huang et al.37,38 reported much slower (τ ∼ 34� 16 s) and (τ ∼ 59� 16 s)
speckle pattern dynamics in in vitro rat RNFBs and attributed them to axonal activity in the
microtubules. This notable difference—their estimates were>15× slower than Thouvenin et al.’s
and >30× slower than ours—suggests that the underlying nerve fiber bundle mechanism probed
by these studies is either: (1) dramatically different in the two species; (2) slowed when removed
from the eye, the extent of which depends on the method of extraction; or (3) actually two
different mechanisms, perhaps because Huang et al.’s temporal sampling was 25 to 50× coarser
than Thouvenin et al.’s and ours (5 and 10 s compared to 0.01 and 0.19 s). More recently,
a similar difference in τ was reported in vivo for IPL in mouse (τ ¼ 39 s) using OCT by
Zhang et al.39 Their temporal sampling was also considerably coarser than ours (12 s compared
to 0.19 s).

Finally, two similar AO-OCT systems (including the one in this study) were used with similar
scan pattern and sampling to measure organelle motility dynamics in vivo in human retinal
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pigment epithelial (RPE) cells of the outer retina.40 Their reported average time constant of <5 s

for RPE cells is notably slower (∼5 times) than for any of the inner retinal structures we mea-
sured (∼ 1 s). Similarity of systems and protocol indicate that the speed difference cannot be
attributed to our use of AO-OCT. On the other hand, we have developed a more rigorous post-
processing method to handle retinal motion and the much weaker reflections from inner retina.
This difference might explain the difference in results.

4.1.3 Influence of eye motion and optical roughness assumption

We mitigated key sources of error that typically affect correlation estimates. These errors
included (1) biases generated by static retinal structures, (2) bias and uncertainty caused by typ-
ical sources of measurement noise, (3) biases from information loss (image gaps) due to eye
motion, (4) errors in fitting an exponential decay to the correlation, and (5) bias generated
by residual eye motion (after image registration). While we were careful to address the most
serious errors in our imaging study, errors could have still accrued. Two of concern include the
effects of residual eye motion and our assumption of fully developed image speckle (i.e., that
optical roughness of the retina is greater than the imaging wavelength). We discuss these sources
of error now.

We corrected for effects of eye motion at subcellular resolution using 3-D B-scan registration
and then further reduced them by time averaging over different combinations of AO-OCT vol-
umes separated by the same Δt. As stated above, we also accounted for eye-movement-related
information loss within the estimation window. While we cannot be certain that these were
sufficient, the correlation plots in Figs. 1(f) and 1(l) provide two lines of evidence to suggest
that they were. First, the 95% CIs of the correlation coefficients (shaded colored bands) are
exceedingly small (95% CI of ρ ¼ 0.02, on average). The significant differences we measured
between the three layers’ correlation coefficients cannot be attributed to eye motion because they
were imaged simultaneously (hence eye motion must be identical for all three layers). Second,
the magnitude and pattern of eye motion is known to vary between subjects. Assuming this is
true for our two subjects, a dominant effect of eye motion would have led to a difference in trends
of their correlation coefficients. This was indeed observed and corrected by removing the effects
of residual eye motion that manifest primarily as subpixel errors [Eq. (6) and Appendix E].

To simplify the interpretation of our results, we assumed the scattering properties of all of the
layers and types of retinal tissues we examined to be “optically rough.”23–26 Optical roughness
refers to retinal scatter within the coherence volume of the AO-OCT beam (nominally 2.4 ×
2.4 × 4.7 μm3) that is dominated by optical path length differences greater than the AO-OCT
wavelength (790 nm), thus leading to fully developed speckle. This assumption is commonplace
in characterizing tissue because of the abundance of submicron-sized organelles that densely
populate cells and are known to scatter light.25,41–43 Optical roughness or lack thereof could
significantly affect the correlation coefficient estimate. In the presence of small tissue displace-
ments (e.g., residual eye motion), speckle for optically rough tissue (e.g., organelle-filled cells)
decorrelates more rapidly than for optically smooth tissue (e.g., surface membranes), regardless of
whether the displacements are corrected in postprocessing (e.g., Appendix E). Subpixel displace-
ment of the retina could therefore affect the correlation coefficient and time constant estimates
differently depending on the scattering properties of the tissue. While it is our understanding
that the three retinal layers (NFL, GCL, and IPL) and tissue types [RNFBs, GCL somas, GCL
vasculature, and IPL synapses and processes (without vasculature)] that we examined are
approximately optically rough, we did not attempt to measure optical roughness.

4.2 Intermediate Temporal Dynamics (Minutes)

We examined the temporal dynamics of macrophage-like cells, GCL somas, and vasculature
perfusion over a time duration of minutes using time-lapse imaging and temporal speckle con-
trast analysis. Direct visualization and color coding of the time-lapse videos enabled us to detect
micron-scale motion of macrophage-like cell processes [Figs. 5(a), 5(c), 6(a), and 6(c)]. To the
best of our knowledge, these are the first observations of macrophage-like cell dynamics in the
living human retina. The cells’ few stout processes and their apparent random distribution in
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a narrow region just anterior to the ILM suggest that they might be hyalocytes, a subtype of
macrophage-like cell that typically resides in the cortical vitreous, either adjacent to or abutting
to the retinal surface.44–47 Hyalocytes share a common origin44,48 and similar dynamics with
microglial cells.46,47,49 Both are scavenging cells that continuously probe their local microenviron-
ment. The cellular motion we observed was consistent with that reported for fluorescence-labeled
microglia in ex-vivo50 and in-vivo51 experiments using mice, and so in our earlier report10 we
interpreted the cells to be microglial or possibly astrocytes. However, microglial cells primarily
populate the GCL and the inner and outer plexiform layers, so interpretation as hyalocytes is
more plausible. Whatever their type, our methods have the sensitivity and temporal resolution to
detect and track these cells in vivo as they scavenge about the retinal surface.

Our time-lapse results of the GCL [Figs. 5(b) and 6(b)] reveal—as expected—a highly stable
GCL soma mosaic and vasculature over the time duration of minutes. These images show clear
demarcation of the vasculature network, including small capillaries, but fail to differentiate per-
fused from nonperfused vessels. However, the temporal speckle contrast metric reveals subtler
dynamics in the time-lapse videos [Figs. 5(e) and 6(e)]. The largest values are detected in the
vasculature due to blood flow (color-coded as white), but we also observe an elevation or bias
that permeates the entire GCL (GCL somas and extracellular space), color-coded as orangish red
in the figures. This bias is greater than the system sensitivity as measured in the vitreous at the
corresponding macrophage-like cell layer [Figs. 5(d) and 6(d)], color-coded as dark violet. The
same layer demonstrates motion of individual macrophage-like cells, revealing activity over
the entire footprint of the cell’s soma and processes and is consistent with our direct visual
inspection of the time-lapse videos.

Interestingly, this speckle contrast metric permitted us to identify one nonperfused
capillary. This capillary—located at the bottom of the speckle contrast image in Fig. 6(e) (yellow
arrows)—is identifiable by its strikingly dark appearance compared to the other vessels.
Dysfunction of this vessel is not evident in the corresponding color-coded time-lapse image
[Fig. 6(b)].

4.3 Slow Temporal Dynamics (1 Year Interval)

In pairs of images acquired 1 year apart and inspected visually in rapid alternation, macrophage-
like cells caused the most obvious image changes, with the same cells likely not present in both
images (Figs. 7 and 8). This degree of activity is consistent with the scavenger role of macro-
phages, which are known to migrate across and through the retina. As they have been implicated
in the pathogenesis of numerous retinal diseases, their numbers are believed to fluctuate as a
function of retinal health. We can now measure their numbers and track them longitudinally.

The cells that compose the GCL appear highly stable over the 1-year interval except for
abrupt changes associated with GCL soma loss and remodeling. For the GCL patches shown
in Figs. 7(c) and 7(g) of subject S1 and in Figs. 8(c) and 8(g) of subject S2, we identified 831 and
589 somas, respectively, that were present at both times. We also identified one soma in subject
S2 that was present in the first image but not the second. This missing soma is more salient in
magnified view in Figs. 8(d) and 8(h), which also reveal migration of neighboring somas into the
void created by the vanished soma that thus represents a form of retinal remodeling at the cellular
level. Loss of 1 out of 590 GCL neurons is consistent with the histological reports of aging-
related loss (0.19 to 0.72%/year52–56) and within the range of loss rates that we have reported in
an ongoing AO-OCT study of five different retinal locations in each of four normal subjects.57

The ability of our method to detect the loss of a single GCL soma demonstrates potential for
extremely early detection of onset of GC-affecting diseases such as glaucoma.

Interestingly, we observed an unidentified dark globoid in subject S1 [Figs. 7(d) and 7(h)]
that formed over the 1-year interval and appeared to have displaced adjacent GCL somas. The
24-μm diameter feature generates bright reflections at its top and bottom boundaries. Its size and
reduced internal reflectance are consistent with a displaced soma from the inner nuclear layer,
e.g., a Müller cell (which are known to sometimes displace to the GCL58,59). However, unlike
neighboring GCL somas, no internal structure is evident, so it may instead be a fluid-filled
vacuole (microcyst). The nearest vessel that could supply fluid is ∼20 μm away. A second
smaller globoid is evident at the far left of the image (second red arrow). In subsequent imaging
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sessions of this same retinal patch, the larger globoid disappeared over 12 months, whereas the
smaller one increased in size. We have since identified similar globoids in the GCL of other
subjects.

5 Conclusion

We have developed a noninvasive method based on AO-OCTand a suite of novel postprocessing
methods that measures both structural and physiological activities in retinal tissue down to the
level of individual cells in the living human eye. The method was successfully applied to quan-
tify the temporal dynamics of entire inner retinal layers, of specific tissue types, and of individual
cells across three different timescales. Detecting physiological dynamics in this way offers the
exciting possibility of longitudinally tracking very early cellular changes associated with disease
onsets that cannot currently be detected clinically. This new capability also advances the pros-
pects for noninvasively mapping functional aspects of neural circuitry in the living human retina.

Appendix A: Temporal Autocorrelation Method

Temporal autocorrelation is already used in Doppler OCTand OCTangiography. These methods
are designed to detect rapid changes that occur on the scale of microseconds to milliseconds,60,61

a range fast enough for measuring blood flow (e.g., velocity ranging from ∼1 to 35 mm∕s62–64).
For our application of measuring subcellular organelle motility, the changes we sought to
detect are entirely diffusive (random motion; no flow) and occur over a much longer time period
(couple of seconds). These translate into a variance rate from 5 to 29 μm2∕s for our AO-OCT
method (see Appendix F). Such slow dynamics (well below that detected by Doppler OCT and
OCT angiography) exposes our method to eye motion artifacts and therefore requires careful
attention to minimize these artifacts.

Starting with these initial requirements, we developed a correlation method using the conven-
tional definition of the autocorrelation coefficient:

EQ-TARGET;temp:intralink-;e001;116;385ρð~r;ΔtÞ ¼ hAð~r; tÞAð~r; tþ ΔtÞiT
hA2ð~r; tÞiT

; (1)

where Að~r; tÞ and Að~r; tþ ΔtÞ are the measured reflectance amplitudes at pixel location ~r in the
AO-OCT volume image and acquired at times t and tþ Δt, respectively, and hiT denotes the
temporal averaging. Our method was designed to mitigate key sources of error that are known to
affect correlation estimates. These errors include (1) biases generated by static retinal structure,
(2) bias and uncertainty generated by typical sources of measurement noise, (3) biases generated
by information loss caused by eye motion, (4) error in fitting an exponential decay to the cor-
relation, and (5) bias generated by residual eye motion (after image registration). Established
methods to handle most of these errors can be found in DLS theory33 (static structure; non-
exponential decay), averaging and Rician- or Rayleigh-noise corrected correlation estimation
(measurement noise65–69), and masked correlation70 (information loss). We customized each
of these to our application (imaging in the living human retina) and then combined them to
create a unique sequence that mitigates our key sources of error. New are our methods to handle
eye motion, including information loss and residual subpixel-level motion. These were imple-
mented as follows.

First, to avoid biases generated by static retinal structure, time-invariant contributions in
the AO-OCT volumes were removed by subtracting the time average of each pixel:

EQ-TARGET;temp:intralink-;e002;116;147A 0ð~r; tÞ ¼ Að~r; tÞ − hAð~r; tÞiT; (2)

where hAð~r; tÞiT is the temporal average over time duration T of the measured reflectance ampli-
tude at each pixel location and thus contains only static structural information. By empirical
assessment, we set T to be 15 min as this duration is significantly longer than the fluctuation
period τ, the time constant of the tissue defined by Eq. (5) below and found in this study to be
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∼1 s. τ ≪ T assured structural correlation bias was removed from time constant measurements
(see Appendix C, for the effect of T).

Second, we reduced the uncertainty and bias caused by noise. For the former, we performed
both temporal and spatial averaging. Temporal averaging was realized by averaging ρ over all
possible volume combinations of Δt within a given volume video and across all volume videos
acquired of the same retinal patch. For our study, the temporal sample size ranged from 23 to
253, depending on Δt. Further improvement was gained by computing the mean correlation
between A 0ð~r; tÞ and A 0ð~r; tþ ΔtÞ across a 3-D spatial estimation window w centered on pixel
location ~r. This entailed first removing spatially invariant contributions by subtracting the local
spatial average: A 00ð~r; tÞ ¼ A 0ð~r; tÞ − hA 0ð~r; tÞi~r∈w, where hi~r∈w denotes the spatial averaging
over w. With these changes, Eq. (1) becomes

EQ-TARGET;temp:intralink-;e003;116;602ρð~r;ΔtÞ ¼
� hA 0ð~r; tÞ · A 0ð~r; tþ ΔtÞi~r∈wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½A 0ð~r; tÞ�2i~r∈wh½A 0ð~r; tþ ΔtÞ�2i~r∈w
p

�
T

: (3)

In our study, we used w sizes of 4 × 4 × 7, 7 × 7 × 7, and 300 × 300 × 7 pixels, denoted as
window #2, #3, and #1 in the main text. Because the average speckle size in our AO-OCT images
was approximately equal to the nominal optical resolution of the AO-OCT (2.4 × 2.4 × 4.7 μm
in retinal tissue) and image sampling was ∼1 μm∕pixel in all directions, the effective number of
independent samples occupying each window size was roughly 4, 13, and 23,000, respectively.

Noise can also create a bias in the correlation estimate that artificially attenuates ρ 71,72 and
reduces the corresponding estimated time constant, τ (defined below). This can be particularly
problematic for additive pixel-correlated noise such as the photon noise, read noise, and relative
intensity noise that are all present in our AO-OCT volume images. To correct this noise bias,
we modified Eq. (3) as

EQ-TARGET;temp:intralink-;e004;116;434ρð~r;ΔtÞ ¼
� hA 00ð~r; tÞ · A 00ð~r; tþ ΔtÞi~r∈wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½A 00ð~r; tÞ�2i~r∈wh½A 00ð~r; tþ ΔtÞ�2i~r∈w
p · β½SNRð~r; tÞ�

�
T

; (4)

where the new variable β½SNRð~r; tÞ� is a multiplicative weighting factor of signal strength that
compensates for the bias in ρ and τ due to additive noise. Here SNRð~r; tÞ is the measured signal-
to-noise ratio defined as fh½A 00ð~r; tÞ�2i~r∈w − Ng∕N, where the pixel-correlated noise N is deter-
mined from AO-OCT pixels in the vitreous whose values are dominated by noise. We estimated
β½SNRð~r; tÞ� using a Monte Carlo simulation assuming that the signal is free of specularity (no
specular reflection) and that both signal and noise are zero-mean complex Gaussian variables
whose amplitudes thus follow a Rician (or Rayleigh) distribution.26,41–43,73,74 More specifically,
we first generated two correlated complex vectors ~s1 and ~s2, each of length equal to the number
of speckles within an averaging window of set size. We controlled the correlation between the
two vectors using Cholesky decomposition and also controlled the signal strength by multiplying
both vectors by an adjustable constant. We also generated two uncorrelated noise vectors ~n1 and
~n2. These were added in the complex domain to the two signal vectors, and their absolute values
(i.e., j~s1 þ ~n1j and j~s2 þ ~n2j) were used to compute correlation coefficients. To model temporal
averaging, we generated 1000 pairs of vectors and then computed the mean and SD of their
correlation coefficients. While Fig. 10 shows only the case for the desired correlation equal
to 1 for simplicity, we confirmed that this bias correction is valid for any desired correlation.
Similar approaches have been proposed, for example, for estimating and correcting systematic
error in diffusion tensor magnetic resonance imaging,65 polarization-sensitive OCT,66,67 and
OCT angiography.68,69 Here our method was designed for correcting errors in computing cor-
relation coefficients based on AO-OCT amplitude signals.

Figure 10(a) shows the simulated correlation coefficient ρð~r;ΔtÞ both without (red trace) and
with (green trace) β correction for different levels of spatial averaging (n ¼ 4, 13, and 23,000).
The true value of ρð~r;ΔtÞ was set to 1. This figure reveals two key findings. First, the notable
differences between the red and green traces substantiate the importance of correcting for
Rayleigh distributed noise bias, especially at low SNR. Second, the reduction in the widths
of the green and red shaded regions as n increases indicate that more precise estimates result
from increased spatial averaging. Further improvement is possible by also performing temporal
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averaging, which reduces standard error of the mean (SEM) of the correlation coefficients. We
employed temporal averaging in processing our data but not in the Monte Carlo simulation.
Figure 10(b) shows the estimate of β we used in our study, obtained with the largest window
size (n ¼ 23;000).

Note that the use of fixed windows for spatial averaging exposes our correlation estimates to
eye motion biases. An eye movement can cause the imaging beam to skip over a region of retina,
yielding a gap in the volume image within a given estimation window. This corresponds to error
source #3: biases generated by information loss caused by eye motion. To avoid this window
bias, we automatically masked those unimaged pixels in the averaging window.

Next, we estimated the time constant, τ, by summing the time-averaged correlation coeffi-
cients across Δt:

EQ-TARGET;temp:intralink-;e005;116;375τð~rÞ ¼
X2.25s
Δt¼0s

ρð~r;ΔtÞ: (5)

This general expression for τ avoids the assumption of an exponential decay (error source
#4), which our data did not follow. Note that the discrete integral in Eq. (5) theoretically under-
estimates τ because it is bounded at 2.25 s, the maximum time duration of our AO-OCT videos.
While τ is sensitive to the maximum time duration (quantified in Appendix D), we used 2.25 s as
it captures the period of most rapid change in the NFL, GCL, and IPL and also avoids unwanted
disturbances, such as eye blinks and tear film breakup.

Finally, our image registration algorithm corrects motion artifacts as small as a single image
pixel, but this leaves subpixel-level artifacts that can bias the correlation coefficient and time
constant, which is also known as “spatial decorrelation noise” in Doppler OCT and OCT
angiography.74–76 Because speckle noise dominates our AO-OCT images, we described this
decorrelation bias as74–76

EQ-TARGET;temp:intralink-;e006;116;192σ2ρ ¼ exp

�
−

X
i¼x;y;z

�
εi
wi

�
2
�
; (6)

where wi is the speckle size of our AO-OCT system (2.4, 2.4, and 4.7 μm for i ¼ x; y; z in retinal
tissue) and ε2i is the residual displacement errors [variance (μm2)] in each axis direction
(i ¼ x; y; z). We estimated ε2i from repeated measures of the same retinal patch of each subject
(see Appendix E). Using Eq. (6), we obtained a multiplicative bias correction factor for the
residual eye motion (1∕σ2ρ) and then applied the factor to both ρð~r;ΔtÞ and τ (see Appendix E).

Fig. 10 Effectiveness of β in Eq. (4) to correct Rayleigh distributed noise as a function of SNR and
spatial averaging. (a) The Monte-Carlo simulation shows the predicted correlation coefficient for
different numbers of independent samples (n ¼ 4, 13, and 23,000) that correspond to the three
different window sizes used in our AO-OCT study. Red solid trace and shaded error bar denote
mean and SD of correlation coefficients without correction. Green solid trace and shaded error bar
denote mean and SD of correlation coefficients with bias correction. For this simulation, the true
correlation coefficient was set to 1 for all values of Δt . (b) The estimated β used in this study
was set to the inverse of the average uncorrected correlation coefficient (red solid trace) for
the n ¼ 23;000 case.
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We computed the SEM to assess confidence limits of our ρ and τ estimates. SEM of τ was
determined by summing the squares of the ρ SEMs and taking the square root.

Appendix B: Temporal Speckle Contrast

We used temporal speckle contrast, an established motion metric based on time-varying
speckle,73,77 to quantify intermediate AO-OCT image temporal dynamics (across minutes).
Temporal speckle contrast is defined as the ratio of the SD of the reflectance amplitude to its
mean:

EQ-TARGET;temp:intralink-;e007;116;621Cð~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½Að~r; tÞ − hAð~r; tÞiT �2iT

p
hAð~r; tÞiT

; (7)

where all variables are defined as in Eq. (1) in Appendix A. Temporal speckle contrast defined in
this way is independent of the average reflectance amplitude and reaches a maximum theoretical
value of 0.52 for fully developed speckle.26,41–43 This maximum value for the reflectance ampli-
tude is equivalent to 1 for the corresponding reflectance intensity, a difference attributable to their
different probability density functions (Rayleigh versus exponential).25,41,42,73 Of practical
significance, use of Eq. (7) on our AO-OCT data underestimates the true speckle contrast, a
consequence of dewarping the B-scans in postprocessing to correct for nonlinearity of the scan
pattern.

Appendix C: Effectiveness of Our Method to Remove Structural
Correlation Bias from Time Constant Measurements

We evaluated the effectiveness of our method [see Appendix A, Eq. (2)] to remove structural
correlation bias (time-invariant contributions) from our time constant measurements. To
determine, we computed the temporal correlation coefficient of NFL using window #1
(300 × 300 × 7 pixel stack) on the same dataset shown in Fig. 1(f) (subject S1), whereas varying
the averaging time period T used in Appendix A, Eq. (2). Figure 11 shows the resulting temporal
correlation coefficient and corresponding time constant for T ¼ 0, 1, 2, 5, 10, and 15 min. As
evident in the plots, short averaging periods (T < 5 min) overestimate the time constant, but this
error decreases asymptotically and becomes negligible for averaging periods T > 10 min. We
obtained similar results for GCL and IPL. Thus, we conclude that the T ¼ 15 min averaging
period used in our study is sufficient to remove structural biases in the layers, tissues, and cells
we examined.

Fig. 11 Effectiveness to remove structural correlation from the NFL correlation coefficient and
time constant improves with increased averaging time period, T . (a) Full-layer (window #1) tem-
poral correlation coefficient ρð ~r c ;ΔtÞ and (b) corresponding time constant for T ¼ 0, 1, 2, 5, 10,
and 15 min. Shaded colored bands about each trace denote 95% confidence intervals.
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Appendix D: Confirm Correlation Coefficient Reaches Zero for Long
Time Periods

The correlation coefficients determined in Figs. 1(f) and 1(l) did not reach zero for the 2.25-s
interval shown. Since in theory the coefficients must for a long enough time period, we tested this
limit by recomputing the correlation coefficients after incorporating additional AO-OCT volume
images that extended the time interval to 1000 s, almost 500× longer than the 2.25 s used in our
study. To extend, we concatenated videos that were acquired consecutively of the same retinal
patch and recorded 30 to 240 s apart (see Table 2). Figure 12 (top row) shows our extended
correlation results for the inner retinal layers (NFL, GCL, and IPL). As evident for both subjects,
the layers decorrelate to less than 0.1 after ∼30 s and reach zero after about 60 to 330 s depend-
ing on the layer. Thus, we confirm our method can detect zero correlation.

Next we computed time constants from the Fig. 12 (top row) correlation coefficient traces
using Eq. (5) in Appendix A and plotted them in Fig. 12 (bottom row) on a log-log scale. As
shown, the time constant strongly depends on the integration time period, varying from 0.3 s
with the shortest integration period (T ¼ 0.3 s) to 8.4 s with the longest (T ¼ 330 s). This
monotonic increase attributes from the shallow, nonexponential decay trace of our correlation
coefficients that exhibit appreciable energy at low temporal frequencies (periods> 5 s). As such
increasingly longer integration periods capture increasingly lower temporal frequencies that
increase the time constant. As this dependence is fundamental to the correlation theory used,
a common approach to circumvent it is to select a fixed integration period for all measurement
comparisons. For this study, we selected T ¼ 2.25 s as this captures the period of most rapid
change in the correlation coefficients of NFL, GCL, and IPL.

Fig. 12 (top row) Temporal correlation coefficients, ρð ~r c ;ΔtÞ, and (bottom row) corresponding time
constants of NFL, GCL, and IPL data in Fig. 1 are shown over an extended time period of ∼103 s.
Window #1 was used. Note that the gap between data points 2.25 and 30 s is the time interval
between consecutively acquired AO-OCT videos in which no data were acquired. The red arrows
indicate the integration time period used in this study. The black arrows and dashed lines indicate
where negative correlation occurs. A negative correlation indicates an unreliable estimate of the
time constant and should be ignored.33
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Appendix E: Determine Decorrelation Bias of Residual (subpixel) Eye
Motion for Correcting Time Constant Measurements

Our image registration algorithm corrects motion artifacts as small as a single image pixel. We
therefore expect ε2i (residual displacement error) in Eq. (6) of Appendix A to be limited by the
sample spacing, i.e., the 1-μm∕pixel spacing used in our study. This limitation has been dem-
onstrated in previous studies under the assumption of fully developed speckle.74–76 With this
assumption, we estimated the size of ε2i by comparing correlation differences measured for two
different sample spacings: 1 and 1.5 μm∕pixel. This approach follows that used in speckle met-
rology to measure surface roughness by purposefully changing speckle size, wavelength, or
illumination angle by a known amount.26 To evaluate, we measured the same retinal patches
of the same subjects using imaging protocols A and C (Table 1). Protocol C gave the same
SNR ratio and A-scan exposure duration as protocol A but with coarser spatial sampling
(1.5 μm∕A-scan instead of 1 μm∕A-scan). Because image registration accuracy is limited to
pixel size, the coarser sampling should increase the residual displacement error (measured in
microns, not pixels).

Figure 13 (top row) shows the resulting temporal correlation coefficients of the inner retinal
layers (NFL and GCL) computed using the two protocols with window #1 (300 × 300 × 7 pixel

stack and 150 × 150 × 7 pixel stack, respectively). Time constants are listed in each plot. The
coarser sampled measurements have time constants that are 27% and 14% lower in subjects S1
and S2, respectively. Assuming this reduction is due entirely to residual displacement errors as
described by Eq. (6) of Appendix A, we solved for ε2i , resulting in a εi of 0.86 μm (subject S1)
and 0.60 μm (subject S2) for 1-μm∕pixel sampling. For both subjects, εi is near the 1-μm∕pixel
sampling, indicating our image registration algorithm corrected eye motion at the pixel resolu-
tion of our method, as we had expected. Next, we estimated σ2ρ for both subjects using the εi
values with Eq. (6) and then corrected this bias in our original correlation coefficients traces [see

Fig. 13 Temporal correlation coefficients ρð ~r c ;ΔtÞ before (top row) and after (bottom row) correc-
tion of residual eye motion bias. Correlation coefficients are shown for two sample spacings (1 and
1.5 μm/A-scan) for two of the inner retinal layers (NFL and GCL) of both subjects, S1 and S2.
Shaded colored bands about each trace denote 95% confidence intervals. See text for details.
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Fig. 13 (bottom row), with and without the σ2ρ correction]. As evident in the plots, correction of
residual displacement errors results in shallower decaying correlation coefficients and increased
time constants that are insensitive to sample spacing (1 and 1.5 μm∕pixel).

Appendix F: Estimate Random Motion of Intracellular Scatterers from
Time Constant Measurements

Temporal correlation measurements are sensitive to fluctuations in light scattered from moving
particles (e.g., intracellular organelles) that occupy the coherence volume of the AO-OCT beam
(2.4 × 2.4 × 4.7 μm3). Following Berne and Pecora,33 we modeled this diffusive motion as a
simple random walk and from which the correlation decay can be described by an exponential:
exp½−Δt · Pi¼x;y;zðσi∕wiÞ2�, where Δt is the temporal sampling interval of our AO-OCT
(0.19 s∕volume), wi is the speckle size of our AO-OCT system [2.4, 2.4, and 4.7 μm for
i ¼ x; y; z in retinal tissue, and σ2i is the random motion variance of scatterers in the retinal tissue
that occurs per second in each direction (i ¼ x; y; z)]. We relate this correlation decay expression
to the time constant by expð−Δt∕τÞ ∼ exp

	
−Δt ·

P
i¼x;y;zðσi∕wiÞ2



and solve for σ2i to obtain an

estimate for the random motion in each direction as described by σ2i ∼
P

i¼x;y;zw
2
i ∕3τ (μm2∕s).

From this expression and our AO-OCT’s measured range of τ (0.38 to 2.25 s), we determined the
range of random scatterer motion that we could measure: 5 to 29 μm2∕s [or 2.5 to 15 μm2∕s for
the equivalent diffusion coefficient (σ2i ∕2)].

Appendix G: Repeated Measures of the Correlation Coefficients

In Secs. 3.1 and 4.1.1, significant differences were found between retinal layers, sublayer tissues,
and individual cells. For example, the two-way ANOVA test for variations in τ with retinal layer
and subject showed that residual sum of squares (equivalent to repeatability errors) σ2e was just
10% of total sum of squares (σ2τ ). Thus, a small fraction (10%) of the total variance is attributed to
repeatability error.

To further substantiate this finding, we repeated the study by measuring the same retinal
patches of the same subjects at four different time points using imaging protocol A (see
Table 2) Each time point consisted of five to six videos acquired within 6 min. Results were
analyzed for variations in τ with retinal layer and subject at each time. We tracked fast temporal
dynamics up to 2.6 Hz (Nyquist frequency of the 5.3-Hz volume acquisition rate) over a 1-deg
retinal field of view and with 1 μm∕A-scan lateral spacing. For simplicity, we computed the
temporal correlation coefficients of the entire layers using window #1. Figure 14 shows the time
constants measured at the four time points. Despite fewer numbers of independent samples
than in the main study (Sec. 3.1), we found the main effect of retinal layers to be significant
for all the time points (p < 0.001). The main effect of subjects and the interaction between

Fig. 14 Four repeated measures of time constant across the three retinal layers (NFL, GCL, and
IPL) and two subjects (S1 and S2). Error bars denote the standard deviation for each repeat.
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subjects and layers were significant in two of the four time points but not for the same points.
Bonferroni-adjusted comparisons indicated that the time constant of GCL was faster than that of
NFL and IPL of both subjects at all time points (p < 0.001). Thus, we conclude that differences
between retinal layers are significant and repeatable. Differences between subjects are too small
for our repeatability test, as designed, to measure.
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