1 August 1992 Optical fiber displacement sensors for process and manufacturing applications
Author Affiliations +
Abstract
We describe three novel optical fiber probes, all based on the focused-beam reflective principle, to measure displacement, form, and surface topography, respectively. Each depends on deriving twin displacement/optical output characteristics that may be resolved by difference/sum referencing. The displacement sensor adopts twowavelength operation using a zone plate to give opposing displacement/output characteristics. The device is noncontacting, and a resolution of better than 0.1% of span is anticipated. A 3-D optical touchprobe has been built for use with coordinate measuring machines. A mathematical model has been generated that relates output to stylus movement, and the model has been verified experimentally. A resolution of 0.1 μm in the x-y plane and 1.0 μm in the z direction is achievable. A further noncontacting probe has been developed for the measurement of surface topography whose output shows low dependency on surface reflectance. A mathematical model has shown good correspondence against a wide range of surface compositions and textures; a resolution of better than 1 μm is foreseen. Proposals are made for industrial implementation of all three probes.
Ronald C. Spooncer, Ronald C. Spooncer, Clive Butler, Clive Butler, Barry E. Jones, Barry E. Jones, } "Optical fiber displacement sensors for process and manufacturing applications," Optical Engineering 31(8), (1 August 1992). https://doi.org/10.1117/12.58847 . Submission:
JOURNAL ARTICLE
6 PAGES


SHARE
RELATED CONTENT

The silver layers in fiber-optic sensors
Proceedings of SPIE (December 06 2017)
A Non Invasive Fibre Optic Pick Up For A Turbine...
Proceedings of SPIE (October 05 1986)
Torsion sensors based on the fiber optic Malus Fabry Perot...
Proceedings of SPIE (November 15 2004)
Microphone based on fiber optic reflective sensor
Proceedings of SPIE (September 24 1995)

Back to Top