1 October 1994 Noniterative reconstruction of complex-valued objects from two intensity measurements
Author Affiliations +
Optical Engineering, 33(10), (1994). doi:10.1117/12.181248
We present results obtained from the application of a novel phase-retrieval algorithm for recovering a complex-valued object from a set of two intensity measurements. The algorithm requires two intensity measurements at different distances from a weak scatterer, where the total transmitted field is composed of the coherent sum of an incident plane wave and the scattered wave. The algorithm is noniterative and does not have the convergence problems associated with iterative algorithms. The new technique shows great promise for inverse-scattering applications, such as optical diffraction tomography and in-line holography of complex-valued objects, with the aim of eliminating the twin-image problem. Results are presented from a computer simulation of a simple object and from experimental data obtained from a microlens array. Our results obtained using the new algorithm on experimental data compare well with those obtained with a modified form of the Gerchberg-Saxton algorithm, at a significantly reduced computational cost.
Mohammad H. Maleki, Anthony J. Devaney, "Noniterative reconstruction of complex-valued objects from two intensity measurements," Optical Engineering 33(10), (1 October 1994). https://doi.org/10.1117/12.181248


Towards practical cost-effective lens-free imaging
Proceedings of SPIE (March 03 2017)
Phase shifting technique in digital holography
Proceedings of SPIE (August 25 2009)
Twin image noise reduction by phase retrieval in in line...
Proceedings of SPIE (September 17 2005)
Imaging by off-axis fractalograms
Proceedings of SPIE (December 01 1997)
Spectral diffraction efficiency of rainbow holograms
Proceedings of SPIE (July 27 1995)

Back to Top