1 February 1995 Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films
Author Affiliations +
Optical Engineering, 34(2), (1995). doi:10.1117/12.188616
Abstract
Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at λ = 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n = 2.15 at = 550 nm and the extinction coefficient of order k = 2 x 10-4. Films deposited by e-gun deposition had refractive index n = 2.06 at λ = 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea = 0 to 300 eV) and low current density (Ji = 0 to 40 μA/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) = 300 eV and Ji = 20 μA/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (≈ 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the lBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s = 3.2 x 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s ≈ 5.6 x 109 dyn/cm2 for Ea = 300 eV and Ji = 35 μA/cm2. All deposited films were amorphous as measured by the x-ray diffraction (XRD) method.
Mirza Cevro, George Carter, "Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films," Optical Engineering 34(2), (1 February 1995). https://doi.org/10.1117/12.188616
JOURNAL ARTICLE
11 PAGES


SHARE
RELATED CONTENT

Ion beam and dual ion beam sputter deposition of tantalum...
Proceedings of SPIE (November 04 1994)
Overview Of Coating Techniques
Proceedings of SPIE (August 15 1984)
MetaMode a new method for high rate MetaMode reactive...
Proceedings of SPIE (December 01 1990)

Back to Top