1 March 1997 Nadaraya-Watson estimator for sensor fusion
Author Affiliations +
Optical Engineering, 36(3), (1997). doi:10.1117/1.601136
Abstract
In a system of N sensors, the sensor Sj , j=1,2, . . . ,N, outputs Y(j ) ? [0,1], according to an unknown probability density pj (Y(j |)uX), corresponding to input X P ?[0,1]. A training n-sample (X1 ,Y1),(X2 ,Y2), . . . ,(Xn ,Yn) is given where Yi5(Y i (1) ,Y i (2) , . . . , Y i(N)) such that Y i (j ) is the output of Sj in response to input Xi . The problem is to estimate a fusion rule f :[0,1]N? [0,1], based on the sample, such that the expected square error I (f ) = ?[X-f(Y)]2p(Y|X)dY(1) dY(2). . . dY(N)dx is minimized over a family of functions F with uniformly bounded modulus of smoothness, where Y=(Y(1),Y(2), . . . ,Y(N)). Let f* minimize I (.) over F ; f* cannot be computed since the underlying densities are unknown. We estimate the sample size sufficient to ensure that Nadaraya-Watson estimator f satisfies P[I(f )- I (f*)> ?.] ? for any ?>0 and ?, 0
Nageswara S. V. Rao, "Nadaraya-Watson estimator for sensor fusion," Optical Engineering 36(3), (1 March 1997). https://doi.org/10.1117/1.601136
JOURNAL ARTICLE
6 PAGES


SHARE
RELATED CONTENT

Fusion rule estimation using vector space methods
Proceedings of SPIE (June 16 1997)
Fusion algorithm for data including kinematic and attribute
Proceedings of SPIE (September 01 1995)
Using robust statistics for sensor fusion
Proceedings of SPIE (April 01 1991)
Feature correspondence in multiple sensor data fusion
Proceedings of SPIE (April 01 1991)
Approach to multisensor/multilook information fusion
Proceedings of SPIE (July 28 1997)

Back to Top