1 April 1998 Using a light microscope to measure motions with nanometer accuracy
Author Affiliations +
Optical Engineering, 37(4), (1998). doi:10.1117/1.601967
A system for measuring nanometer motions of microscopic structures is demonstrated. Stop-action images of a target are obtained with a light microscope, CCD camera, and stroboscopic illuminator. Motions are determined directly from measured images using algorithms from computer vision. The accuracy of motion measurements using the system is assessed using a moving target with calibrated displacements. Accuracy is determined for specimens viewed under our most optimal conditions as well as for a number of suboptimal conditions that illustrate important degradation mechanisms. Measured errors are compared to predictions based on computer simulations of theoretical models. Results show that the most important hardware factors include substrate vibrations and camera imperfections. Measurement errors for the most optimal hardware conditions are primarily due to systematic bias in the computer vision algorithms. For our most optimal conditions, the system can resolve motions as small as nanometers. Thus, errors in motion measurements are small compared to both the wavelength of the light used to obtain the images and the pixel spacing of the video microscope.
C. Quentin Davis, Dennis M. Freeman, "Using a light microscope to measure motions with nanometer accuracy," Optical Engineering 37(4), (1 April 1998). http://dx.doi.org/10.1117/1.601967

Motion measurement

Motion estimation


Error analysis

Light emitting diodes

Detection and tracking algorithms



Sheared-beam imaging in the presence of space-time distortions
Proceedings of SPIE (September 30 1994)
Striping in multidisk video servers
Proceedings of SPIE (January 15 1996)
Reversible watermarking using two-way decodable codes
Proceedings of SPIE (June 22 2004)
A method of fast mosaic for massive UAV images
Proceedings of SPIE (November 08 2014)
Advances in pulsed thermography
Proceedings of SPIE (March 23 2001)

Back to Top