1 November 1999 Far-infrared transmission of diamond structure semiconductor single crystals--silicon and germanium
Author Affiliations +
Optical Engineering, 38(11), (1999). doi:10.1117/1.602242
Abstract
The current research demonstrates the effectiveness of silicon as a transmissive material for use within the far infrared wavelength range of 20 to 160 microns. This study involves samples with a wide range of resistivities and temperatures including: n-type Si of 4000, 2000, 160, 65, 12, and 2.6 ohm-cm and p-type Si of 500 and 60 ohm-cm within a temperature range of -100°C to 250°C, as well as n-type Ge of 39, 25, 14.5, 5.0, 2.5, and 0.5 ohm-cm within a temperature range of -100°C to 100°C. Far infrared absorption mechanisms are briefly discussed. The experimental transmission data are used to discuss the interaction between absorption by lattice resonance and free carrier mechanisms. The effect of room temperature resistivity on silicon's far infrared transmission characteristics is shown. The primary free carrier scattering mechanism, at elevated temperature, is shown to be acoustic phonons. Highly resistive silicon is found to be an excellent transmissive material in the far infrared. These results may be used to develop silicon and germanium optical systems in the far infrared range.
Jason E. Peters, P. Darrell Ownby, "Far-infrared transmission of diamond structure semiconductor single crystals--silicon and germanium," Optical Engineering 38(11), (1 November 1999). https://doi.org/10.1117/1.602242
JOURNAL ARTICLE
8 PAGES


SHARE
Back to Top