1 November 2006 Fabrication of diffractive optics by use of slow tool servo diamond turning process
Author Affiliations +
In recent years, it has become possible to fabricate complicated optical surfaces using multi-axis ultraprecision machines. Two diffractive optical designs were fabricated using an ultraprecision diamond turning machine equipped with four independent axes. Unlike the conventional clean-room-based micromachining process, this research demonstrates the development of two innovative diamond tool trajectories that allow the entire diffractive pattern to be machined in a single operation directly, without going through multiple steps, as commonly used in conventional lithography processes. The machined diffractive optical elements were measured for curve geometry and surface roughness. In addition, the optical performance was also evaluated. Finally, a simple welding test setup was utilized to test the 256-level diffractive optical elements (DOEs). Compared to conventional approaches where feature indexing is difficult and unreliable, the slow tool servo (STS) process can be utilized to produce DOEs with accurate geometry and optical surface finish; therefore, the process may be called non-clean-room or maskless micromachining. Unlike its predecessors, this micromachining process which is based on ultraprecision diamond machining can be used to produce true three-dimensional (3D) features in a single operation, thus making it a promising technology for micro-optical, electromechanical component fabrication. Moreover, the 3D micro features can be readily applied to a freeform substrate, making this process a unique approach for fabrication of complicated micro-optical devices.
© (2006) Society of Photo-Optical Instrumentation Engineers (SPIE)
Lei Li, Lei Li, Allen Y. Yi, Allen Y. Yi, Chunning Huang, Chunning Huang, David A. Grewell, David A. Grewell, Avraham Benatar, Avraham Benatar, Yang Chen, Yang Chen, } "Fabrication of diffractive optics by use of slow tool servo diamond turning process," Optical Engineering 45(11), 113401 (1 November 2006). https://doi.org/10.1117/1.2387142 . Submission:


Back to Top