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bstract. Feature extraction is a crucial step for pattern
ecognition. Recently, some manifold learning algorithms
ave drawn much attention. Although their properties of lo-
ality preserving are fairly significant, most manifold-based
lgorithms have limits to solve classification problems. First,

hey do not have good discriminant ability. Second, they fail
o remove the redundancy among the extracted features.

e present a new feature extraction method, called kernel
ncorrelated neighborhood discriminative embedding
KUNDE�, which integrates two abilities of manifold learning
nd pattern classification. The purpose of KUNDE is to pre-
erve the within-class neighboring geometry while maximiz-

ng the between-class scatter. Optimizing an objective func-
ion in a kernel feature space, nonlinear features are
xtracted. Moreover, by putting a simple uncorrelated con-
traint on the computation of the basis vectors, the extracted
eatures via KUNDE are statistically uncorrelated and thus
ontain minimum redundancy. Experimental results on radar
arget recognition indicate the promising performance of the
roposed method. © 2007 Society of Photo-Optical Instrumentation
ngineers.
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Introduction

n the past few years, some nonlinear manifold learning
lgorithms have been proposed to discover the nonlinear
tructure of the manifold by investigating the local geom-
try of samples, such as isomap,1 locally linear embedding
LLE�,2,3 and Laplacian eigenmap.4 These methods are de-
ned only on training data, and the issue of how to map
ew test data remains difficult. Therefore, they cannot be
pplied directly to recognition problems.

Recently, some manifold-based linear algorithms, like
eighborhood preserving embedding �NPE�,5 resolve the
ifficulty by finding a mapping on the whole data space,
ot just on training data. However, they have a common
nherent limitation: they deemphasize discriminant infor-

ation that is very important for the recognition task. In
ddition, the basis vectors of these methods are statistically
orrelated, and then the extracted features contain much
edundancy. As a result, the overlapped information can
istort the distribution of the features and even degrade the
ecognition performance.

091-3286/2007/$25.00 © 2007 SPIE
ptical Engineering 120502-
In this work, a new feature extraction algorithm, called
kernel uncorrelated neighborhood discriminative embed-
ding �KUNDE� is proposed to address the problems men-
tioned earlier. On the one hand, the method explicitly con-
siders both the within-class neighboring information and
the between-class scatter information and emphasizes the
discriminant information. On the other hand, the method
obtains statistically uncorrelated features with minimum re-
dundancy by putting a simple uncorrelated constraint on the
computation of the basis vectors. Mapping the input data to
some high-dimensional feature space using the kernel tech-
nique, nonlinear features are extracted.

2 Kernel Uncorrelated Neighborhood
Discriminative Embedding

Given a data set X= �x1 , . . . ,xN� in RD, suppose that each
data point xi belongs to one of the C classes �1 , . . . ,�C,
and each class contains nc �c=1, . . . ,C� samples. The data
is then mapped into an implicit high-dimensional feature
space F by a nonlinear mapping function � :x�RD

→��x��F. The problem is to find a transformation matrix
V that maps these points to be new points Y= �y1 , . . . ,yN�
=VT��X� in Rd�d�D�, where yi=VT��xi�.

The algorithm procedure of KUNDE is stated here:

1. Construct the kernel matrix K=��X�T��X� whose el-
ements are Kij =k�xi ,x j�, where k is a kernel function
that satisfies k�xi ,x j�= ���xi� ·��x j��.

2. Compute the weight matrix W by minimizing the re-
construction error E�W�=�i ���xi�−� jWij��x j��2,
where � jWij =1, and Wij�0 if ��x j� is one of the n
identical-label nearest neighbors of ��xi�; otherwise,
Wij =0. An efficient way to minimize the error can
refer to Ref. 3.

3. Compute matrices M, L, and G as follows: M= �I
−W��I−W�T, L=I−E, and G=I− �1 /N�eeT, where I
is an identity matrix, Eij =1 /nc if xi and x j belong to
the cth class; otherwise, Eij =0, and e= �1, . . . ,1�T.

4. Solve the generalized eigenvalue problem K�M
+L�Kai=�iKGKai, with �1� ¯ ��d, and constitute
the matrix A= �a1 , . . . ,ad�.

5. For any data point x in RD, the embedded feature in
Rd is given by y=VT��x�=AT�k�x1 ,x� , . . . ,
k�xN ,x��T.

3 Theoretical Justification

In this section, we provide the theoretical analysis of the
KUNDE algorithm. As mentioned earlier, the objective of
KUNDE is to preserve the within-class neighboring geom-
etry while maximizing the between-class scatter in the low-
dimensional space.

First, we characterize the within-class geometry of each
data point in the feature space F by linear coefficients that
reconstruct the data point from its n identical-label nearest
neighbors. To preserve the within-class neighboring rela-
tions, the basic idea is that the same weights that recon-
struct the point ��xi� in F should also reconstruct its em-
bedded counterpart yi in Rd. Therefore, we should minimize
the following cost function:
December 2007/Vol. 46�12�1
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1�V� = �i �yi − � j
Wijy j�2

= �Y�I − W��2,

= trace�Y�I − W��I − W�TYT�,

= trace�VT��X�M��X�TV� , �1�

here M= �I−W��I−W�T.
Second, since the purpose of KUNDE is to solve classi-

cation problems, we should make the embedded vectors
rom different classes far from each other. Here, we pro-
ose to maximize the between-class scatter:

2�V� = trace�VTSb
�V� , �2�

here Sb
� is the between-class scatter matrix in F. Accord-

ng to Ref. 6, the total scatter matrix St
�, within-class scatter

atrix Sw
�, and between-class scatter matrix Sb

� can be rep-
esented as follows:

t
� = �1/N��i=1

N
���xi� − m����xi� − m�T,

=�1/N���X��I − eeT/N���X�T = ��X�G��X�T,

w
� = �c=1

C �x��c
���x� − mc����x� − mc�T,

=��X��I − E���X�T = ��X�L��X�T,

b
� = St

� − Sw
� = ��X��G − L���X�T = ��X�B��X�T, �3�

here G=I− �1 /N�eeT, L=I−E, and B=G−L. Thus, Eq.
2� can be rewritten as:

2�V� = trace�VT��X�B��X�TV� . �4�

ombining Eqs. �1� and �4�, we should minimizing the fol-
owing objective function:

�V� =
trace�VT��X�M��X�TV�
trace�VT��X�B��X�TV�

. �5�

Now, we turn to the statistically uncorrelated constraint.
ssuming that any two different components yi and yj �j
i� of the extracted feature y=VTx are uncorrelated, this
eans that:

��yi − E�yi���yj − E�yj��� = vi
TSt

�v j = 0, �6�

here vi and v j are two different columns of the matrix V.
esides, vi should be normalized. Without loss of generali-
ation, let vi satisfy:

i
TSt

�vi = 1. �7�

hen, from Eqs. �6� and �7�, we get:

TSt
�V = I . �8�

As a result, KUNDE can be formulated as the following
onstrained minimization problem:
ptical Engineering 120502-
min
VTSt

�V=I

trace�VT��X�M��X�TV�
trace�VT��X�B��X�TV�

= min
VT��X�G��X�TV=I

trace�VT��X�M��X�TV�
trace�I − VT��X�L��X�TV�

. �9�

Further, Eq. �9� is equivalent to:

min
VT��X�G��X�TV=I

trace�VT��X��M + L���X�TV� . �10�

Since each column of V should lie in the span of all train-
ing samples in F, there exist coefficients � j�j=1, . . . ,N�
such that v=� j=1

N � j��x j�=��X�a, where a= ��1 , . . . ,�N�T.
Therefore, Eq. �10� becomes:

min
ATKGKA=I

trace�ATK�M + L�KA� , �11�

where K is the kernel matrix, which is defined in Sec. 2.
Last, the constrained minimization problem is reduced

to a generalized eigenvalue problem, as follows:

K�M + L�Ka = �KGKa. �12�

The matrix A is determined by the d eigenvectors corre-
sponding to the first d smallest eigenvalues of Eq. �12�.
Once A is obtained, for any data point x in the input space,
the nonlinear feature is given as y=VT��x�
=AT�k�x1 ,x� , . . . ,k�xN ,x��T.

4 Experimental Results

In this section, experiments are performed on radar target
recognition with measured and simulated range profiles, re-
spectively. The performance of the KUNDE algorithm is
compared with those of kernel NPE �KNPE�,5 KPCA,7 and
KFDA.8 The Gaussian kernel k�xi ,x j�=exp�−�xi−x j�2 /�2�
is adopted, and the parameter � is simply set to 1. Since we

Fig. 1 Recognition rate versus reduced dimensionality on mea-
sured range profiles.
December 2007/Vol. 46�12�2
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ocus only on feature extraction, as for classification, the
earest-neighbor classifier using a Euclidean metric is em-
loyed for the sake of simplicity.

.1 Experiments on Measured Data
he measured data are from three flying airplanes, includ-

ng An-26, Yark-42, and Cessna Citation S/II. Each airplane
as 260 range profiles. In the experiments, each profile is
reprocessed by energy normalization. Then, for each air-
lane, one third of all profiles are used for training and the
est for testing. Figure 1 shows the plots of recognition
ates obtained by each method versus the reduced dimen-
ionality. Note that the dimensionality of KFDA is at most
−1, where c is the number of classes.

From Fig. 1, it can be seen that KUNDE achieves the
est recognition results at each feature dimensionality and
FDA performs second best, while KNPE and KPCA are

elatively poor since neither of them considers discrimina-
ion information. This indicates that KUNDE has more dis-
riminative power than the other three methods by incorpo-
ating the within-class neighboring information and the
etween-class scatter information and that the statistically
ncorrelated features are very helpful for improving the
ecognition performance.

.2 Experiments on Simulated Data
he simulated profiles are from six airplanes: Mirage, IDF,
16, J8II, SU27, and E2C, and each airplane has 60 pro-

ig. 2 Recognition rate versus reduced dimensionality on simulated
ange profiles.
ptical Engineering 120502-
files. Similarly, each profile is normalized to unit energy,
and 20 profiles per target are used for training and the rest
for testing. The recognition results are shown in Fig. 2. The
results suggest that KUNDE outperforms again all the other
methods. In addition, it can be seen that as the feature di-
mensionality increases, KUNDE has a higher recognition
rate and KPCA and KNPE can also give satisfactory
results.

5 Conclusions

A novel algorithm called kernel uncorrelated neighborhood
discriminative embedding �KUNDE� is presented for pat-
tern recognition. KUNDE has two prominent characteris-
tics. First, it integrates the within-class neighboring infor-
mation and the between-class scatter information, which
enables its powerful discriminative ability. Second, it ex-
tracts statistically uncorrelated features with minimum re-
dundancy by introducing an uncorrelated constraint, which
is helpful to improve recognition performance. Experimen-
tal results on radar target recognition show that KUNDE
achieves better recognition performance than all the other
involved methods.
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