1 February 2008 Effects of atmospheric turbulence on the scintillation and fade probability of flattened Gaussian beams
Author Affiliations +
Abstract
In an attempt to mitigate the effects of the atmosphere on the coherence of an optical (laser) beam, interest has recently been shown in changing the beam shape to determine if a different power distribution at the transmitter will reduce the effects of random fluctuations in the refractive index. Here, a model is developed for the field of a flattened Gaussian beam as it propagates through atmospheric turbulence, and the resulting effects on the scintillation of the beam and beam wander are determined. A comparison of these results is made with the like effects on a standard TEM00 Gaussian beam. The theoretical results are verified by comparison with a computer simulation model for the flattened Gaussian beam (FGB). Further, a determination of the probability of fade and of mean fade time under weak fluctuation conditions is determined using the widely accepted lognormal model. Although this model has been shown to be somewhat optimistic when compared to results obtained in field tests, it has value here in allowing us to compare the effects of atmospheric conditions on the fade statistics of the FGB with those of the lowest order Gaussian beam.
© (2008) Society of Photo-Optical Instrumentation Engineers (SPIE)
Doris C. Cowan, Doris C. Cowan, Larry C. Andrews, Larry C. Andrews, } "Effects of atmospheric turbulence on the scintillation and fade probability of flattened Gaussian beams," Optical Engineering 47(2), 026001 (1 February 2008). https://doi.org/10.1117/1.2844715 . Submission:
JOURNAL ARTICLE
14 PAGES


SHARE
RELATED CONTENT

Computer simulation of the laser radar
Proceedings of SPIE (May 26 1998)
Annular Gaussian beams in turbulent media
Proceedings of SPIE (January 26 2004)

Back to Top