1 March 2010 Image reconstruction from limited-view projections by convex nonquadratic spline regularization
Author Affiliations +
Abstract
We investigate performance of a convex nonquadratic (CNQ) spline regularization method applied to limited-angle tomography reconstruction. Since limited-angle data lack projections over a certain range of view angles, they produce poor reconstructions with streak artifacts and geometric distortions. To obtain a good solution, a feasible prior that can eliminate or reduce artifacts and distortions is necessary. The CNQ prior used in this paper is expressed as a linear combination of the first- and the second-order spatial derivatives and applied to a CNQ penalty function. To determine a solution efficiently, we use the fast globally convergent block sequential regularized expectation maximization algorithm. Our experimental results demonstrate that the hybrid CNQ spline prior outperforms conventional nonquadratic priors in eliminating limited-angle artifacts.
© (2010) Society of Photo-Optical Instrumentation Engineers (SPIE)
Van-Giang Nguyen, Soo-Jin Lee, "Image reconstruction from limited-view projections by convex nonquadratic spline regularization," Optical Engineering 49(3), 037001 (1 March 2010). https://doi.org/10.1117/1.3339871 . Submission:
JOURNAL ARTICLE
8 PAGES


SHARE
Back to Top