1 October 2011 Recent advances in microdevices for transportation industry
Author Affiliations +
Optical Engineering, 50(10), 101508 (2011). doi:10.1117/1.3605680
Advances in emerging technologies of microelectromechanical systems (MEMS) and nanotechnology, especially relating to the applications, constitute one of the most challenging tasks in today's micromechanics and nanomechanics. In addition to design, analysis, and fabrication capabilities, this task also requires advanced test methodologies for determination of functional characteristics of devices produced to enable verification/validation of their operation, as well as refinement and optimization of specific designs. In particular, development of microdevices requires sophisticated tools, especially as these devices apply to transportation industry because of stringent safety and reliability requirements. These tools can be categorized as analytical, computational, and experimental. Solutions using the tools from any one category alone do not usually provide necessary information on MEMS, and extensive merging, or hybridization, of the tools from different categories is used. One of the approaches employed in this development of structures of contemporary interest is based on a combined use of the analytical, computational, and experimental solutions methodology. Development of this methodology was made possible by recent advances in optoelectronic methodology, which was coupled with the state-of-the-art computational methods, to offer a considerable promise for effective development of various designs. This approach facilitates characterization of dynamic and thermomechanical behavior of the individual components, their packages, and other complex material structures.In this paper, recent advances in optoelectronic methodology for microscale measurements are described and their use is illustrated with representative examples.
Ryszard J. Pryputniewicz, "Recent advances in microdevices for transportation industry," Optical Engineering 50(10), 101508 (1 October 2011). https://doi.org/10.1117/1.3605680


Research of the micromechanical three-axis accelerometer
Proceedings of SPIE (December 30 2016)
MOSCITO: a program system for MEMS optimization
Proceedings of SPIE (April 19 2002)
Experimental evaluation of the pile up trigger method in a...
Proceedings of SPIE (February 23 2012)
Finite element modeling of micromachined MEMS photon devices
Proceedings of SPIE (September 02 1999)

Back to Top