1 November 2011 Toward high-sensitivity and high-resolution submillimeter-wave video imaging
Author Affiliations +
Optical Engineering, 50(11), 113204 (2011). doi:10.1117/1.3654089
Against a background of newly emerged security threats, the well-established idea of utilizing submillimeter-wave radiation for personal security screening applications has recently evolved into a promising technology. Possible application scenarios demand sensitive, fast, flexible and high-quality imaging techniques. At present, best results are obtained by passive imaging using cryogenic microbolometers as radiation detectors. Building upon the concept of a passive submillimeter-wave stand-off video camera introduced previously, we present the evolution of this concept into a practical application-ready imaging device. This has been achieved using a variety of measures such as optimizing the detector parameters, improving the scanning mechanism, increasing the sampling speed, and enhancing the image generation software. The camera concept is based on a Cassegrain-type mirror optics, an optomechanical scanner, an array of 20 superconducting transition-edge sensors operated at a temperature of 450 to 650 mK, and a closed-cycle cryogen-free cooling system. The main figures of the system include: a frequency band of 350±40 GHz, an object distance of 7 to 10 m, a circular field of view of 1.05 m diameter, and a spatial resolution in the image center of 2 cm at 8.5 m distance, a noise equivalent temperature difference of 0.1 to 0.4 K, and a maximum frame rate of 10 Hz.
Erik Heinz, Torsten May, Detlef Born, Gabriel Zieger, Guenter Thorwirth, Solveig Anders, Viatcheslav Zakosarenko, Torsten Krause, André Krüger, Marco Schulz, Hans-Georg Meyer, Marco Schubert, Michael Starkloff, "Toward high-sensitivity and high-resolution submillimeter-wave video imaging," Optical Engineering 50(11), 113204 (1 November 2011). https://doi.org/10.1117/1.3654089





Spatial resolution

Image sensors

Interference (communication)

Back to Top