1 February 2011 Inline inspection of textured plastics surfaces
Author Affiliations +
Abstract
This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.
© (2011) Society of Photo-Optical Instrumentation Engineers (SPIE)
Walter Michaeli, Walter Michaeli, Klaus Berdel, Klaus Berdel, } "Inline inspection of textured plastics surfaces," Optical Engineering 50(2), 027205 (1 February 2011). https://doi.org/10.1117/1.3544588 . Submission:
JOURNAL ARTICLE
6 PAGES


SHARE
Back to Top