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The deflectometry technique is used for a surface measure-
ment where the local slopes are optically measured and
the surface is reconstructed using an integration procedure.
This approach has several advantages over a direct height
measurement.1, 2 The resultant measurement of this technique
is the directional derivative of a wavefront W , which is de-
fined by

φk(r) = �W · vk+ηk = cos ϕk
∂W (r)

∂x
+ sin ϕk

∂W (r)

∂y
+ ηk,

(1)

where r = (x, y) is a position in an M×N rectangular grid
of pixels, vk = (cos ϕ, sin ϕ) is the measurement direction of
a sensor, k = 1, . . . , K with K ≥ 2, and ηk represents the
measurement and processing errors.

A common way to integrate the derivatives is to use a
global integration method,3, 4 where most of the integration
techniques only use two orthogonal directions in the mea-
surement, that is φ1 and φ2 with v1 = (1, 0) and v2 = (0, 1).
Recently, in Ref. 5 a procedure was proposed that uses multi-
ple directional derivatives, which reduces the noise contribu-
tion in the reconstruction of the wavefront. This consists of
acquiring k-number of directional derivatives with different
measurement direction, and the estimated wavefront We is
computed as the minimizer of the following cost functional:

U (W ) =
∑

k

∑
(x,y)∈L

{[W (x + 1, y) − W (x, y)] cos ϕk

+[W (x, y + 1) − W (x, y)] sin ϕk − φk(x, y)}2,

(2)

where L defines the region with valid data.
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One drawback of the above cost functional is the com-
putational time employed to found the minimizer of the
functional. An alternative to reduce the processing time is
to perform the integration through faster methods, that is
to perform the integration in the frequency domain. To our
knowledge, in the literature there are only two very simi-
lar works related to the integration of directional derivatives
in frequency domain;6, 7 both methods search an approxi-
mation between the measurement data and the directional
derivative model in the least-squares sense. One problem
with this least-squares approach is its sensitivity to a high
level of noise, even when these methods use a large num-
ber of derivatives. This situation is illustrated in Fig. 1: (a)
shows a synthetic wavefront used as reference, (b) shows the
wavefront reconstructed with the method reported in Ref. 5,
and (c) shows the wavefront reconstructed with the method
reported in Ref. 7. In all cases, a Gaussian noise with a
signal-to-noise ratio equal to −20 db was added to 10 direc-
tional derivatives employed in the reconstructions. As one
can see, the reconstructed wavefront shows artifacts due to
noise despite the large number of derivatives utilized on the
methods.

To overcome this drawback and compute a fast reconstruc-
tion, we add to the cost functional given in Eq. (2), a term
which assumes that the wavefront is continuous.8 Thus, the
wavefront We is estimated as the minimizer of our proposed
regularized cost functional

J (W ) =
∑

k

∫ ∫
|�W · vk − φk |2dx dy

+λ

∫ ∫
(|Wxx |2 + |Wxy |2 + |Wyy |2) dx dy, (3)

where the subscripts indicate partial derivatives, and λ
is the regularization parameter. The second term of this
cost functional penalizes the strong oscillations in the
curvature of the reconstructed wavefront through the
term λ.9

The minimization of the above cost function is performed
by means of Fourier transform theory:10 Taking the Fourier
transform and using its properties, we obtain the minimizer
of Eq. (3) expressed as

F{We} =
i

∑
k

[F{φk}(q · vk)]
∑
k

[(q · vk)2] + λ ||q||2 , (4)

where i = √−1, q = (u, v) is the position vector on fre-
quency domain, and F{·} denotes the Fourier transform. This
expression becomes the same reported in Ref. 10 for the case
of K = 2 with v1 = (1, 0) and v2 = (0, 1), and for the case
of λ = 0, Eq. (4) becomes the same expression reported in
Ref. 7. For practical purposes, one has to consider that the
discrete Fourier transform always needs full fields of valid
data. The missing data, for instance due to occlusions in the
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Fig. 1 (a) Synthetic wavefront. Wavefronts reconstructed with (b) Ref. 5, (c) Ref. 7, and (d) the proposed method with λ = 20.

measurement, has to be extrapolated by use of a Gershberg-
type algorithm or an alternative technique.11, 12

The performance of the proposed technique is illustrated
by two experiments. All numerical experiments were made
in a 2.53 GHz Pentium Dual Core PC with 8 GB of main
memory using Ubuntu 9.04 as the operative system. The
algorithm used to compute the discrete Fourier transform
was the FFTW library.13 The first experiment was a numerical
estimation using the synthetic wavefront shown in Fig. 1(a).

As mentioned above, a Gaussian noise with a signal-to-noise
ratio equal to −20 db was added to 10 directional derivatives,
which were generated by use of Eq. (1); the direction vk was
equally spaced from 0◦ to 180◦, where every derivative is
a 512 × 512 matrix. The resultant wavefront is shown in
Fig. 1(d) using λ = 20. As one can observe, the artifacts in
the reconstructed wavefront are notably reduced. The mean
square error (MSE) obtained in each reconstruction is shown
on Table 1.

Fig. 2 Experimental results: (a) Fringe pattern of a progressive lens in the deflectometry setup. Wavefronts reconstructed with (b) Ref. 5 and (c)
the proposed method with λ = 5. The heights are represented in the same gray-scale.
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Table 1 Mean square error for the reconstructed wavefronts.

Time employed
Method MSE (ms)

Ref. 5 0.243157 9011

Ref. 7 0.320633 472

Eq. (4), λ = 20 0.147356 472

The second experiment was the reconstruction of a
progressive lens surface. An example of the fringe pattern
used in the experiment is shown in Fig. 2(a). Five directional
derivatives were acquired using Eq. (1) with vk equally
spaced from 0◦ to 180◦ with steps of 30◦, where every image
has a resolution of 2048 × 1552 pixels. The fringe patterns
were processed using the procedure reported in Ref. 14.
The computational time employed for the reconstruction
was nearly 879 ms using the proposed technique with
λ = 5. In the case of the procedure of Ref. 5, the time
employed was 272,275 ms. The resultant reconstructions
are shown in Figs. 2(b) and 2(c). As one can observe, both
reconstructions are similar where the uncertainty of both
measurements are about 0.04 mm. However, there is a huge
difference in the computational process employed for the
reconstruction.

The performance of the cost functional proposed here,
Eq. (3) and their minimizer given in Eq. (4), was proved with
two fast and accurate reconstructions using a large number
of directional derivatives, as it was shown in the results de-
scribed above. One extra advantage of the proposed method
is its feasibility to be implemented on a dedicated hard-
ware for processing in real-time, which is the aim of future
research.
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