12 October 2012 Errata: Measuring the profile of a convex aspherical surface by solving a bi-objective optimization problem
Author Affiliations +
Optical Engineering, 51(10), 109801 (2012). doi:10.1117/1.OE.51.10.109801
Abstract
This article [Opt. Eng.. 51, , 073607 (2012)] was originally published on 17 July 2012 with errors on p. 2 and in Tables 2 and 4. On p. 2, the last sentence has been changed from "Therefore, taking the value of the distance point to point from z rta+ trans   to z rta   we get:" to "Therefore, taking the value of the distance point to point from z rot+ trans   to z rta   we get:" Also, on the left side of Table 2, row 6, the value of A 3 should be negative. On the left side of Table 4, row 5, mm −7 should be mm −5 . In the right side of row 6, mm −9 should be mm −7 . The corrected tables appear below.
Escobar: Errata: Measuring the profile of a convex aspherical surface by solving a bi-objective optimization problem

This article [Opt. Eng. 51, 073607 (2012)] was originally published on 17 July 2012 with errors on p. 2 and in Tables 2 and 4. On p. 2, the last sentence has been changed from “Therefore, taking the value of the distance point to point from zrta+trans to zrta we get:” to “Therefore, taking the value of the distance point to point from zrot+trans to zrta we get:”

Also, on the left side of Table 2, row 6, the value of A3 should be negative. On the left side of Table 4, row 5, mm7 should be mm5. In the right side of row 6, mm9 should be mm7. The corrected tables appear below.

Table 2

Geometric parameters, rotation angles, and translations for zrta and zref.

Test surface (zrta)Reference surface (zref)
r=−44.9507  mmrb=−44.95  mm
k=−1.0007kb=−1
A1=2.9001×10−6  mm−3B1=2.9×10−6  mm−3
A2=1.1107×10−10  mm−5B2=1.1106×10−10  mm−5
A3=−1.0380×10−14  mm−7B3=−1.0379×10−14  mm−7
A4=2.4396×10−17  mm−9B4=2.4395×10−17  mm−9
α=0.1250  rad
β=0.1250  rad
tx=−50  mm
ty=50  mm
tz=100  mm

Table 4

Solutions found by minimizing Eq. (14), and the RMS error on zkr.

Solution found when the test surface fitted by R2 is analyzed, RMS error on zkrSolution found when the test surface fitted by R1 is analyzed, RMS error on zkr
r=-44.9546  mmr=-44.9442  mm
k=-1.0045k=-0.9911
A1=2.9002×10−6  mm−3A1=2.9001×10−6  mm−3
A2=1.1103×10−10  mm−5A2=1.1102×10−10  mm−5
A3=-1.0369×10−14  mm−7A3=−1.0388×10−14  mm−7
A4=2.4392×10−17  mm−9A4=2.4391×10−17  mm−9
Percentage difference in r=0.010%Percentage difference in r=0.012%
Percentage difference in k=0.45%Percentage difference in k=0.89%
Percentage difference in A1=0.0069%Percentage difference in A1=0.0064%
Percentage difference in A2=0.0270%Percentage difference in A2=0.0315%
Percentage difference in A3=0.0963%Percentage difference in A3=0.0915%
Percentage difference in A4=0.0123%Percentage difference in A4=0.0164%
RMS error on zkr=0.011  mmRMS error on zkr=0.016  mm

In addition, the first line of the caption of Fig. 13 has been changed to read, “Behavior of the ES (black) and the HGA (blue) when both...”

The manuscript was corrected online on 5 October 2012.

Juan Jaime Sanchez Escobar, "Errata: Measuring the profile of a convex aspherical surface by solving a bi-objective optimization problem," Optical Engineering 51(10), 109801 (12 October 2012). http://dx.doi.org/10.1117/1.OE.51.10.109801
Submission: Received ; Accepted
JOURNAL ARTICLE
1 PAGES


SHARE
KEYWORDS
Error analysis

Optical engineering

Back to Top