13 June 2012 Residual misregistration noise estimation in hyperspectral anomalous change detection
Author Affiliations +
Optical Engineering, 51(11), 111705 (2012). doi:10.1117/1.OE.51.11.111705
We propose a novel method to estimate the first- and second-order statistics of the residual misregistration noise (RMR), which severely affects the performance of anomalous change detection techniques. Depending on the specific distribution of the RMR, the estimates allow for precisely defining the size of the uncertainty window, which is crucial when dealing with misregistration noise, as in the local coregistration adjustment approach. The technique is based on a sequential strategy that exploits the well-known scale-invariant feature transform (SIFT) algorithm cascaded with the minimum covariance determinant algorithm. The SIFT procedure was originally developed to work on gray-level images. The proposed method adapts the SIFT procedure to hyperspectral images so as to exploit the complementary information content of the numerous spectral channels, further improving the robustness of the outliers filtering by means of a highly robust estimator of multivariate location. The approach has been tested on different real hyperspectral datasets with very high spatial resolution. The analysis highlighted the effectiveness of the proposed strategy, providing reliable and very accurate estimation of the RMR statistics.
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)
Nicola Acito, Salvatore Resta, Marco Diani, Giovanni Corsini, "Residual misregistration noise estimation in hyperspectral anomalous change detection," Optical Engineering 51(11), 111705 (13 June 2012). https://doi.org/10.1117/1.OE.51.11.111705

Error analysis


Optical engineering

Statistical analysis

Detection and tracking algorithms

Image analysis

RGB color model

Back to Top