Laser Damage

Vitaly E. Gruzdev
Michelle D. Shinn
Laser Damage

Vitaly E. Gruzdev
University of Missouri
Department of Mechanical and Aerospace Engineering
Columbia, Missouri 65211
E-mail: gruzdevv@missouri.edu

Michelle D. Shinn
Thomas Jefferson National Accelerator Facility
Newport News, Virginia 23606
E-mail: shinn@jlab.org

Laser damage of optical materials, first reported in 1964, continues to limit the output energy and power of pulsed and continuous-wave laser systems. In spite of some 48 years of research in this area, interest from the international laser community to laser damage issues remains at a very high level and does not show any sign of decreasing. Moreover, it grows with the development of novel laser systems, for example, ultrafast and short-wavelength lasers that involve new damage effects and specific mechanisms not studied before. This interest is evident from the high level of attendance and presentations at the annual SPIE Laser Damage Symposium (aka, Boulder Damage Symposium) that has been held in Boulder, Colorado, since 1969. This special section of Optical Engineering is the first one devoted to the entire field of laser damage rather than to a specific part. It is prepared in response to growing interest from the international laser-damage community. Some papers in this special section were presented at the Laser Damage Symposium; others were submitted in response to the general call for papers for this special section.

The 18 papers compiled into this special section represent many sides of the broad field of laser-damage research. They consider theoretical studies of the fundamental mechanisms of laser damage including laser-driven electron dynamics in solids (O. Brenk and B. Retthfeld; A. Nikitov, A. Epifanov, and S. Garnov; T. Apostolova et al.), modeling of propagation effects for ultrashort high-intensity laser pulses (J. Gulley), an overview of mechanisms of inclusion-induced damage (M. Koldunov and A. Manenkov), the formation of specific periodic ripples on a metal surface by femtosecond laser pulses (M. Ahsan and M. Lee), and the laser-plasma effects on damage in glass (Y. Li et al.). Material characterization is represented by the papers devoted to accurate and reliable measurements of absorption with special emphasis on thin films (C. Mühlig and S. Bublitz; B. Cho, E. Danielewicz, and J. Rudisill; W. Palm et al; and J. Lu et al.). Statistical treatment of measurements of the laser-damage threshold (J. Arenberg) and the relationship to damage mechanisms (F. Wagner et al.) represent the large subfield of laser-damage measurements. Various aspects of multilayer coating and thin-film characterization are considered in papers by B. Cho, J. Rudisill, and E. Danielewicz (spectral shift in multilayer mirrors) and R. Weber et al. (novel approach to damage studies based on third-harmonic generation microscopy). Of special interest for readers is the paper by C. Stolz that summarizes the results of four “thin-film damage competitions” organized as a part of the Laser Damage Symposium. Another paper is devoted to thermal annealing of damage precursors (N. Shen et al.). Finally, the influence of nano-size contamination on initiation of laser damage by ultrashort pulses is considered in paper of V. Komolov et al.

The emerging research developments in the field of laser damage and optical materials for high-power lasers represented by these papers will be very beneficial for readers of Optical Engineering and researchers from closely related areas.