29 February 2012 Real-time geometric lens distortion correction using a graphics processing unit
Author Affiliations +
Abstract
Optical imaging systems often suffer from distortion artifacts which impose important limitations on the direct interpretation of the images. It is possible to correct for these aberrations through image processing, but due to their calculation-intensive nature, the required corrections are typically performed offline. However, with image-based applications that operate interactively, real-time correction of geometric distortion artifacts can be vital. We propose a new method to generate undistorted images by implementing the required distortion correction algorithm on a commercial graphics processing unit (GPU), distributing the necessary calculations to many stream processors that operate in parallel. The proposed technique is not limited to affine lens distortions but allows for the correction of arbitrary geometric image distortion artifacts through individual pixel resampling at display rates of more than 30 frames per second for fully processed images (1024×768  pixels). Our method enables real-time GPU-based geometric lens distortion correction without the need for additional digital image processing hardware.
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)
Sam Van der Jeught, Jan A. N. Buytaert, Joris J. J. Dirckx, "Real-time geometric lens distortion correction using a graphics processing unit," Optical Engineering 51(2), 027002 (29 February 2012). https://doi.org/10.1117/1.OE.51.2.027002 . Submission:
JOURNAL ARTICLE
6 PAGES


SHARE
Back to Top