
Color star tracking II: matching

John Enright
Geoffrey R. McVittie



Color star tracking II: matching

John Enright
Geoffrey R. McVittie
Ryerson University
350 Victoria Street
Toronto, Canada
E-mail: jenright@ryerson.ca

Abstract. A novel matching algorithm is presented that can identify stars
using raw images of the sky obtained from a CMOS color filter array
detector. The algorithm combines geometric information with amplitude
ratios calculated from the red, green, and blue color color channels.
Conventional algorithms that match stars based solely on inter-star geom-
etry (and sometimes relative brightness), typically require three or more
stars for a confident star match. In contrast, the presented algorithms
are able to find matches with only two imaged stars in most regions of
the sky. The necessary catalog preparation and a simple star-pair match-
ing algorithm based on combined color intensity ratios and the angular
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initial results from sensor field testing are presented. © The Authors.
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1 Introduction
A measure of robustness for autonomous star trackers is the
ability to obtain an attitude estimate without a priori attitude
information, while viewing an arbitrary part of the sky.
Performance is usually limited by regions of the sky with low
star densities. When solving the “lost-in-space” (LIS) prob-
lem, imaged stars must be associated with records in the star
tracker’s on-board catalog. Although some star-matching
routines can operate with only two stars in the field of view
(FOV) once an initial solution has been found, almost all LIS
matching algorithms require three visible stars for an initial
fit. Unfortunately, the geometry of many pairs and triplets of
stars are ambiguous and unique attitude solutions are not
always assured with the minimum number of imaged stars.
The most common remedy for this ambiguity is an optical
design that guarantees detection of more than the minimum
number of stars. Designers can meet this requirement either
by enlarging the FOV, or observing dimmer stars. Our re-
search considers a different approach to resolving ambiguous
star patterns: that of using coarse measurements of stellar
spectra as well as inter-star angles.

Awide variety of star identification techniques have been
proposed in literature including triangle, pole-star, grid, and
adaptive techniques. A survey by Spratling and Mortari1

provides a good overview of the current state of the field.
Matching routines rely on geometric arrangements between
stars (e.g., arc lengths, dihedral angles, etc.). Some ap-
proaches (e.g., Servidia et al.),2 use visual magnitude infor-
mation to help resolves ambiguity between similar geometric
patterns. Others, such as Rufino and Accardo3 argue explic-
itly against the use of absolute magnitude because accurate
photometry is difficult with the optics and detectors found in
typical star trackers.

Although spectroscopy is common practice in astronomy,
prior to our current work, there seems to be no discussion of
using star spectral classification to assist in star tracking.
Adopting color detectors will impact many of the steps in
the star tracker image processing sequence. This paper

examines how color information can be used to assist the
star matching process; in our companion paper,4 we develop
techniques to reproducibly measure position and color of the
stars in a raw detector image captured by a color CMOS
detector.

We begin our analysis by summarizing our recent devel-
opment of a nano-satellite star tracker. This section details a
reference hardware and software implementation that estab-
lishes the context for the subsequent analysis. In Sec. 3 we
introduce the basic mechanisms for matching observed stars
against cataloged data. We present both a basic matching
strategy and an extension that allows us to match an entire
scene’s worth of stars. We then discuss the challenges build-
ing catalogs suitable for color matching. Section 4 examines
a number of practical and theoretical issues including: sourc-
ing spectral information; encoding and storing the catalog
based on a instrument’s optical properties; and evaluating the
theoretical performance of a star tracker design. Finally, we
validate the performance of our matching algorithms using
simulations and night-sky tests.

2 Reference Design
This paper represents a companion study to the recent devel-
opment of a very small star tracker, the S3S ST-16. A
collaborative development effort between Sinclair Inter-
planetary (SI), the University of Toronto Space Flight
Laboratory (UofT-SFL), and the Ryerson University Space
Avionics and Instrumentation Laboratory (SAIL), the ST-16
(Fig. 1) is designed around a commercial CMOS detector
and a simple lens assembly. This design is described at
length in Enright et al.5 The hardware and processing archi-
tecture of the ST-16 have served as a starting point for this
current study. Our performance targets and assumptions con-
cerning accuracy, FOV size, resolution, sensitivity, update
rate are derived from the ST-16 design. We recognize that
this is not an optimal design for a color star tracker, but it
is a very easily realized one, for the detector in the ST-16
has both monochrome and color variants.
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2.1 Optics and Performance

The ST-16 detector is the monochrome version of the Aptina
MT9P031. The MT9P031 CMOS detector has a resolution
of 2592 × 1944 pixels and a 2.2 μm pixel pitch. The mono-
chrome version is equivalent to the color version of the detec-
tor, but lacks the color filter array (CFA) that produces
distinct output color channels. The sensor’s F1.2, 12 mm
(dia.) lens assembly gives the ST-16 a threshold detection
magnitude of Mthresh ¼ 5.75, a 7.5 half-angle FOV, θFOV,
and nominal exposure of 100 ms. The design provides at
least three visible stars in view in more than 99.9% of the
possible sensor orientations.

The CFA version of the detector allows distinction be-
tween sources of different colors. The CFA consists of small,
absorptive filters in front of each pixel in a repeating 2 × 2
pattern. These filters absorb some of the incident light, so the
overall sensitivity to dim sources is lower for the color detec-
tor than for the monochrome version. An illustration of the
typical differences in quantum efficiency between color and
monochrome detectors is shown in Fig. 2. We note that the
monochrome curve is adapted from the specifications for
the MT9V022 detector6 (the monochrome response of the
MT9P031 is very similar to the MT9V022, but does not
appear on the public datasheet). Although there are some
differences, based on the spectrum of the source stars, the
color detector generates about one third of the integrated
response of the monochrome (i.e., ∼1.25 visual magnitudes).

2.2 Baseline Processing Model

Several processing steps are necessary to convert raw images
into attitude estimates (see Fig. 3). In a color star tracker, a
raw sky image from a CFA detector contains the intensity
readings from the red, green, and blue pixels. The initial
image processing routines in the star tracker must analyze
this intensity map and identify likely stars. These coarse
star locations must then be refined to give precise estimates
of centroid position and color. A camera model rectifies the
centroid locations and predicts corresponding direction vec-
tors for each star. Matching routines identify the stars by
comparing the available data to on-board catalog of known
star patterns. A final attitude estimate follows directly from
the matched star information. Except for the presence of
color information, this processing sequence is typical of
most modern star trackers.

Color representation is an important consideration; in our
companion paper,4 we found that integrated intensity ratios
were an effective representation of star color. Our detection
routines use the raw CFA output to estimate ratios between

Fig. 1 The ST-16 star tracker prototype, with penny for scale.
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the blue-green, Λbg, and red-green, Λrg, channels, together
with the centroid position, (mc; nc). These algorithms use
a nonlinear least-squares cost function and Levenberg-
Marquardt minimization. The typical root mean squared
(RMS) color noise reported in the study was less than
0.1, and often about 0.05. The centroid position error was
equivalent to about 0.2 pixels. These metrics will influence
the effectiveness of our matching algorithms.

Our proposed color-based matching routines (and the
monochrome matching routines on the ST-16) rely on know-
ing the direction vectors, s in the detector frame of reference.
Each ST-16 star tracker must be calibrated to account for
manufacturing tolerances and optical aberrations such as
distortion. We use a 17 parameter model to relate centroid
position on the detector array, i.e., (m0; n0), to the star vector
direction, sD. Our calibration procedure and model is based
on the scheme proposed by Heikkila and Silven.8 We employ
a gimballed platform, a fibre-illuminated pinhole, and an
inverted telescope to produce a point source at infinity. After
calibration, the typical residual centroid error is 0.2 pixels
(RMS). This includes the effects of temporal noise and cal-
ibration error. Presently, we assume that the calculation of sD
does not rely on the star color; if necessary, additions to the
model could correct for chromatic aberration.

3 Color-Based Matching
The challenge of solving the lost-in-space problem for star
trackers rests with the matching of the observed image stars
to those in the sensor’s on-board catalog. Whereas other
processing steps are deterministic in time and memory, the
matching process involves search operations. Thus a viable
algorithm must be both accurate (i.e., it identifies the correct
stars), and computationally efficient (the search is bounded
in time).

The star matching routines must associate the observable
star characteristics (i.e., mc, nc, Λrg, and Λbg), with known
stars in the on-board catalog. This is essentially a mapping
problem: given a set of observed stars A and a catalog of stars
C, we need to identify the relations that map Ak → Cj (in our
notation, we use a subscript index when we need to refer to
a particular star from one of these sets). Generally, the more
stars that can be matched, the better the resulting attitude fix.
However, not all detections made by the sensor are actually

stars—planets, other satellites, or even noise may cause false
detections—so we may not be able to find a match for all the
stars in A.

We first develop the basic kernel matching of a single pair
of image stars against the on-board catalog. Not only does
this represent the fundamental matching operation, but it
also provides analysis tools that can be used to predict the
performance of the sensor for a given optical design. We
then extend the pairwise matching algorithm to efficiently
match more than two stars. We conclude this section with
a discussion of how these algorithms can be implemented
efficiently.

3.1 Matching Star Pairs

The basic matching algorithm relies on measurements ob-
tained from a pair of image stars. Each measurement set con-
sists of five quantities: four color ratios (two for each star)
and the angular separation between the pair. In monochrome
star trackers, star-pairs alone are too ambiguous enough for
reliable matching, but the color data adds sufficient informa-
tion for a unique match in many cases.

For a particular image, we select two stars Ak; Al ∈ A and
compute the tuple TAkl

:

TAkl
≡ fΛrgk Λbgk φkl Λrgl Λbgl g; (1)

where φkl is computed from the two unit direction vectors:

φkl ¼ arccosðŝTk ŝlÞ: (2)

For notational simplicity, we have dropped the frame of
reference subscript from these vectors. Our catalog contains
similar tuples derived from known star locations and spectral
properties. We can compare our observations to the catalog
by computing the Mahalanobis distance between each pair of
tuples.* In general, this has the form:

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTA − TCÞTΣðTA − TCÞ

q
; (3)

where Σ is the measurement covariance matrix of the ele-
ments of TA. If Σ is diagonal (i.e., errors are uncorrelated),
then we can write the distance between TAkl

and TCij
as:

ΔðTAkl
; TCij

Þ ≡
�
Λrgk − Λrgi

σrg

�
2

þ
�Λrgl − Λrgj

σrg

�
2

þ
�
φkl − φij

σφ

�
2

þ
�
Λbgk − Λbgi

σbg

�
2

þ
�Λbgl − Λbgj

σbg

�
2

s
. (4)

The k and l designations in the observed pairs are arbi-
trary, so we must compute both ΔðTAkl

; TCij
Þ and ΔðTAlk

;
TCij

Þ and take the smaller of the two distances. The maxi-
mum likelihood match between TAkj

and the cataloged pairs
is the TCij

that minimizes Δ. Sorting C in order of increasing
φ can make this search efficient.

3.2 Star Pair Ambiguity

We expect that the catalog star tuple TCij
that minimizes Δ

will be the correct match to a pair of observed stars. This
assumption holds provided that centroid and color noise

does not move the image tuple TAij
away from the correct

match and closer to another catalog pair. Examining the dis-
tribution of Δ values calculated between catalog tuples
allows us to assess the likelihood of measurement noise
causing incorrect matches. We outline the basic framework
for this analysis here and further develop the technique in
Sec. 4. This analysis allows us to predict theoretical sensor
performance based on catalog properties and a few optical
design parameters.

*McLachlan9 provides a good introduction for those unfamiliar with this
type of classifier.
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The smaller the Mahalanobis distance between two cata-
log pairs, the more likely they are to be mistaken for one
another. Below a certain distance threshold we consider the
two tuples ambiguous. Using Eq. (4) to compute Δ between
two catalog pairs gives:

ΔCðp; qÞ ≡ ΔðTCp
; TCq

Þ. (5)

Here we have replaced the star indices i, j from each tuple
with a single catalog index, p or q. Assuming normal error
distributions, we can use linear discriminant analysis theory
to compute the ideal error probability. Adapting the result
from McLachlan et al.,9 this becomes:

Perror ¼
1

2

�
1þ erf

�
−Δ
2

ffiffiffi
2

p
��

. (6)

Equivalently, we can solve for the critical separation Δ⋆,
for a specified success rate Pcorrect ¼ 1 − Perror:

Δ⋆ ¼ −2
ffiffiffi
2

p
erf−1ð1 − 2PcorrectÞ. (7)

Star pairs with a Mahalanobis distance less than Δ⋆ are
ambiguous. The results in the remainder of this paper use
Pcorrect ¼ 0.99 to establish a distance threshold. The corre-
sponding critical distance is Δ⋆ ¼ 4.65.

Understanding how ambiguous pairs affect system perfor-
mance depends on our multistar matching strategy and the
contents of the whole star-pair catalog. These concepts are
developed in Secs. 3.3 and 4, respectively.

3.3 Matching Whole Scenes

Our basic matching algorithm gives the best catalog match to
a particular pair of image stars. Generally, we can improve
the accuracy of our attitude estimate if we can find consistent
matches to any additional stars in the sensor image. This
additional accuracy comes at the cost of increased computa-
tional complexity. Most matching algorithms using pairs or
triplets scale with OðN2

AÞ or OðN3
AÞ, where NA is the number

of stars (some classes of algorithms such as Grid Algorithms
can moderate this).10,11 For star-rich areas of the sky, we need
an efficient approach to matching.

Our strategy for efficiently matching multiple star scenes
is based on the random sample consensus (RANSAC)
approach12—a popular approach in computer vision. We use
a greedy heuristic to quickly assemble a self-consistent set
of matches, concentrating on finding ‘inliers’ instead of
rejecting outliers. This algorithm works as follows (see Fig. 4
for a pictorial representation of this process):

• From the initial set of imaged stars A [Fig. 4(a)], we
select two stars, Ak and Al [Fig. 4(b)], form the pair-
tuple TAkl

and find the best pairwise match between
TAkl

and the star catalog. The stars Ak and Al form
the basis for a candidate consensus set (or conset), S
[Fig. 4(c)].

• For each star Ai; r ≠ k; l we select one star Aj from S
(i.e., Aj ∈ S), and form the pair-tuple TAij

[Fig. 4(d)].
We then find the best pairwise match between TAij

and
the star catalog, with the additional constraint that the
mapping j → p is already known. If we can find such a
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Fig. 4 Graphical illustration of consensus matching.

Optical Engineering 014406-4 January 2013/Vol. 52(1)

Enright and McVittie: Color star tracking II: matching



match where Δ < Δ⋆, then we tentatively accept the
mapping i → r between Ai and the catalog star Cr. If
we cannot find an acceptable match for Ai we move on
to the next star in A.

• If we have a tentative match for Ai, we need to check to
ensure that the match is consistent with the other stars
in the consensus set S [Fig. 4(e)]. Although we could
evaluate the consistency using the full color informa-
tion, it is faster to perform this check based on geom-
etry alone. Thus, for each As ∈ S, where we have the
tentative mapping i → r and confident mapping s → k,
we must have:

jδφj ≡ jφAis
− φCrk

j < δφ⋆; (8)

where the maximum acceptable distance error can be
derived from the critical Mahalanobis distance, assum-
ing the color errors are zero:

δφ⋆ ¼ σφΔ⋆∕2. (9)

The factor of two is needed because Δ⋆ was defined in
terms of the separation between two catalog entries.

• If the tentative match, i → r, satisfies the consis-
tency check outlined in Step-3, then we add Ai to S
[Fig. 4(f)]. A false star in the scene, may return a
valid pairwise match [Fig. 4(g)], but is very unlikely
to pass the geometric consistency checks [Fig. 4(h)].
If the tentative match does not meet the consistency
criteria, Ai is not added to S.

• Once all of the stars in A have been evaluated [Fig. 4(i)],
we consider the number of stars we have added to S,
i.e., NS. If the number of matched stars exceeds a
specified fraction of the total number of imaged stars,
i.e., NS ≥ ηNA, this indicates that we were able to
assemble a good consensus set from the initial matched
pair. In this case, the algorithm can terminate early.
Conversely, a small consensus set suggests a poor ini-
tial match. In our example, this might happen if the
false star was included in the initial pair of stars. In this
case, we select a new initial pair and rebuild the conset.
The overall matching algorithm terminates when we
have found a good consensus set, or after a specified
number of matching attempts has completed.

Like many RANSAC-derived heuristics, good matching
performance requires some algorithm tuning. We have
found that a matching threshold fraction in the range 0.6 ≤
η ≤ 0.7 combines good tolerance to false stars (i.e., low η),
with good rejection of bad matches. We must also set an
upper bound on the number of RANSAC iterations we
allow; for our trials, we have used 3 · NA.

The matching algorithm keeps track of the largest conset
found throughout all of its iterations. Upon termination,
we can classify the results as one of three cases: a high-
confidence match (conset size exceeds the η, threshold), a
low-confidence match (conset is smaller than the η thresh-
old), or no match at all (no acceptable starting pairs found).
In the first and last cases our next actions are well defined.
In the first, we proceed with the processing sequence and
calculate the sensor attitude; in the last case, we report a
matching failure and abort. The remaining case—the low-
confidence match—may require extra logic to categorize.

In a flight sensor, we may want to formalize more elaborate
decision rules, but for this study, we merely log the result
and complete the attitude calculation.

4 Star Catalog Design
Our matching algorithms rely on comparing the star tracker
observations to catalog values. Thus, we must pay particular
attention to the source material, content, and organization
of C. Much of the recent innovation in star tracker processing
has involved different approaches to catalog generation.
Calculations that can be performed off-line (areas, distances,
etc.) reduce the computational (and often power), require-
ments on the star tracker processor. However, precomputing
geometric metrics often increases the need for storage: a
catalog of a few thousand stars routinely produces tens of
thousands of star-pairs, and possibly millions of star-triples.

Color star catalogs share many of the same characteristics
as monochrome catalogs, but present a number of unique
challenges. In this section, we detail the content and organi-
zation of our baseline star catalog. We consider both conven-
tional requirements for star geometry as well as the extra
preparation required to tabulate color information.

4.1 Preliminary Catalog Processing

The source catalog for this research is the 5th Revised
Edition of the Yale Bright Star (YBS) catalog.13 We denote
this catalog by Y. We subscript this symbol, by the catalog
index, i.e., Yi to refer to a particular star. The on-board cata-
log is denoted by C. Working from the source catalog Y, we
select a subset of stars for use in C. We select stars for C
based on the following criteria:

• Brightness. Our primary criterion for inclusion in the
on-board catalog is visual magnitude Mv (i.e., bright-
ness). Because the larger values ofMv indicate dimmer
stars we select those stars with Mv ≤ Mthresh. Mthresh

represents the brightness of the dimmest stars that a
particular star tracker can reliably detect under nominal
operating conditions.

• Double stars. Binary stars or stars whose apparent sep-
arations are too small to be distinctly resolved by the
sensor optics are treated as a single star. The brighter
star in each case is included in C.

• Transient Objects. A number of the entries in the YBS
are attributed to transient novae. They have been re-
tained in Y to preserve the numbering scheme, but are
unnecessary when compiling C.

Each star in the source catalog, Y, has a variety of general
astronomical data associated with it. Not all of this informa-
tion is necessary in the on-line catalog. For convenience we
store some basic information about each star(i.e., its Henry-
Draper identifier and visual magnitude), but the star’s posi-
tion is most important.

Most astronomical catalogs tabulate star position in terms
of right ascension α, and declination, δ. High precision appli-
cations may also include proper motion information (we
neglect the effect of star motion for this study). To avoid the
need for unnecessary trigonometric calculations, it is con-
venient to store a star’s position as a unit vector, expressed
in the Earth Centred Inertial (ECI) coordinate system, sI1 .
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4.2 Cataloging Color Data

Assembling an on-board catalog requires compilation of
color information for each star in C. We must consider what
color information will be stored; where it will come from;
and whether any off-line processing is necessary to tailor our
data sources to the specific performance of our sensor.

In astronomy, color is an ambiguous term related to an
object’s emission spectrum. In addition to standard identi-
fiers and celestial coordinates, conventional catalogs, like
the YBS catalog, often include several quantities related
to the spectrum of the star. These include: spectral type,
color index, and effective temperature. Other collated data-
sets contain detailed spectra for individual stars.

Our discussion of color-based star detection relies on a
familiarity with spectral type classification schemes. For sim-
plicity we use the popular Morgan-Keenan (and Kelmann)
(MK) system.14–16 Formally, cataloged spectral types are
composite classifications based mainly on star temperature,
but also on specific features (e.g., emission or absorption
lines, etc) of the complete spectrum.

Although spectral type is a multiattribute categorization,
the notion of color index is much closer to a directly mea-
surable quantity. Classical color indices were introduced by
Johnson and Morgan and indicate magnitude difference in
the integrated response across standardized spectral bands.14

Unfortunately, the color filters on our detector do not have
the same response as the official Johnson and Morgan pass-
bands, making direct conversion between the two difficult.
Instead, we calculate our own version of these color indices
for each star in the star tracker catalog. Given a star’s spec-
trum, IðλÞ, we can calculate the red-green and blue-green
color indices:

Λrg ≡

R λ2
λ1
χrIðλÞdλR λ2

λ1
χgIðλÞdλ

; (10)

Λbg ≡

R λ2
λ1
χbIðλÞdλR λ2

λ1
χgIðλÞdλ

. (11)

The χr;g;b capture the detector quantum efficiency for each
of the color channels.

Choosing a source of stellar spectra for our star tracker
catalog presented its own challenges. Complete spectra is
unnecessary in the on-line catalog; we need only store the
expected color ratios. Three approaches seemed feasible:
(a) continuous black-body curves based on the stars’ effec-
tive temperatures; (b) reference solar spectra based on spec-
tral type; and (c) tabulated spectra for each individual star.
The reference spectra used in this study are taken from the
Pickles spectral library;17 individual spectra are taken from
the recent Indo-US Library of Coud Feed Stellar Spectra,18

and to a lesser extent from an earlier catalog by Burnashev.19

Temperature estimates are based on data in the Indo-US cata-
log. A comparison of these approaches is shown in plots for
γ-Ori (Fig. 5) and α-Ori (Fig. 6). We used the Pickles B2II
spectrum for γ-Ori (there is no B2III spectrum provided), and
a black-body temperature of 22,570 K. For α-Ori we use the
M2I spectrum and a temperature of 3540 K.

We decided to use the Pickles catalog as our color data-
base, eliminating the alternatives based on the following

rationale. First, although the black-body curve is a good
match to the hot spectrum of γ-Ori, it is a very poor match
to the much cooler α-Ori. Because effective temperature is
based on total integrated flux, not on a match to the spectra,
black-body distributions introduced inaccuracies in the cal-
culated color ratios [i.e., from Eqs. (10) and (11)]. Second,
even though the Indo-US catalog is considered to have broad
spectral coverage (346-946 nm) it is not quite sufficient
to cover the full sensitive range of our CMOS detector.
Improved color ratios could be calculated by merging partial
spectral catalogs for all members of C—Pickles describes
such strategies in context of building his reference spectra—
but this process would be laborious. Furthermore, except
for small local features, the Pickles and Indo-US curves are
in reasonable agreement. The integration in the evaluation of
the Λ ratios will minimize the effect of local differences. In
the balance, the Pickles’ data was a pragmatic compromise.

Having selected the Pickles catalog, P, as our source of
color information, we must still associate each element of
C with one of the reference spectra. Assigning reference

400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Wavelength (nm)

N
or

m
al

iz
ed

 F
lu

x

B2II Reference Spectra (Pickles)
γ−Ori (IndoUS)
Black−body

Fig. 5 Comparison of Spectra for γ-Ori (Bellatrix). Flux normalized to
550 nm.

400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Wavelength (nm)

N
or

m
al

iz
ed

 F
lu

x

M2I Reference Spectra (Pickles)
α−Ori (IndoUS)
Black−body

Fig. 6 Comparison of Spectra for α-Ori (Betelgeuse). Flux normalized
to 550 nm.

Optical Engineering 014406-6 January 2013/Vol. 52(1)

Enright and McVittie: Color star tracking II: matching



spectra to the stars selected from the YBS is not always
straightforward. The spectral types given in the latter catalog
do not always have exact matches in the former. Rules for
selecting the closest match depend of the stellar classifica-
tion: for hot stars, the class and subclass dominate; for cooler
stars, luminosity can be quite important as well. We have
developed a set of heuristic rules for this process, but further
cross-checking with the available spectra in the Indo-US
catalog is necessary. Figure 7 shows the predicted color ratio
response across different spectral types for our baseline
detector. The hook in the bottom right of the figure is caused
by the second passband in the blue and green curves around
800 nm (see Fig. 2).

4.3 Star Pair Catalog

The Pickles catalog, P, provides a mechanism for computing
the expected color ratios for each star in C. To complete our
catalog, we compile a secondary table of feasible star tuples
TCij

. Our matching algorithm is based on these pairs of stars
and this table provides the basis for finding matches. The
angular separation between two stars, k; l ∈ C, φkl can be
computed from their direction vectors:

φkl ¼ arccosðsTIksIlÞ: (12)

To compile the table of star-pairs, we evaluate all the pair
combinations and select those that satisfy

φmin < φkl ≤ 2θFOV: (13)

The upper bound ensures that all catalog star-pairs fit
within the minor axis of the sensor FOV; the lower bound
is chosen so that the star peaks can be resolved separately.
Typically φmin ¼ θFOV∕500, an empirically chosen distance,
equivalent to about four pixels.

It is unnecessary to store the entire five-element tuple on-
line. The color information can be stored in a separate table
indexed by the star identifier or reference spectrum identifier.

When we need to find the best match to a star-pair tuple T,
we do not have to calculate the Mahalanobis distances for all

tuples in the catalog. Rather we recognize that each compo-
nents ofΔmust lie in a bounded range. Thus, if the measured
image arc-length is φkl, we need only check those catalog
entries whose arc-length, φp, satisfies:

φkl − δφ⋆ ≤ φp ≤ φkl − δφ⋆: (14)

If we sort the catalog entries in order of increasing φ, then
all of the feasible matches will be sequential in the pairs cata-
log T. We use a hash-based index scheme to find the start
of the appropriate section of the catalog (see Fig. 8). We allo-
cate storage for a pairs index Ph; 0 ≤ h < Nh (typically we
use Nh ¼ 1024, but this choice was somewhat arbitrary).
For an observed φkl we calculate the separation hash h:

h ¼ bH · φklc; (15)

where the constant scaling factor H is chosen such that
H ¼ Nh∕φmax. The value of Ph is the smallest catalog index
p, where

φp ≥
h
H

− δφ⋆. (16)

The matching routine then starts at table index Ph and
moves forward sequentially until the catalog value of φ
exceeds the upper bound of Eq. (14). The hash h corresponds
to a range of different φ values, so the initial φPh

may
actually lie outside the lower bound of Eq. (14). In practice,
this is a negligible concern because there are typically only a
handful of extra pairs, and these can all be skipped quickly
based on their arc-length.

5 Experimental Validation
We conducted a number of tests to assess the overall feasibil-
ity of the color star matching concept. First, studying the
distribution of ambiguous tuples (Sec. 3.2) in a color star
catalog measures the effectiveness of the Δ-based classifier
and allows us to compare the performance of sensor point-
designs. Second, we examine the performance of the full
matching algorithm using a combination of scene simulation
and night-sky testing.

5.1 Sensor Design Trade Studies

One of the key performance metrics for a star tracker is its
availability, A. This quantity represents the fraction of time
when an image will provide a correct attitude solution. Stray
light or occlusion from the sun, Earth or moon, can reduce
the effective availability for a given mission, but more
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fundamental is the instrument’s raw ability to image enough
stars to provide an attitude fix. In this section, we examine
the sensor performance as predicted from the properties of
the star-pair catalogs (from Sec. 4). We use these results to
evaluate the suitability of the baseline ST-16 optical design
and identify evolutionary design changes that may be better
suited for color-matching.

Sensor availability is strongly tied to the dimensions of
the FOV, θFOV, the threshold detection magnitude, Mthresh,
and the star matching scheme. For our color-based matching,
availability will be limited by instrument orientations that
meet one of the following criteria:

• Zero or one visible stars. This is strictly a function of
θFOV and Mthresh.

• Views that only image ambiguous star-pairs. For exam-
ple, if two stars are visible, then that pair must be
ambiguous; if three stars are visible then all three pairs
combinations must be ambiguous. Thus, ambiguous
pairs are only harmful if no unambiguous pairs are
available.†

To predict the performance of a particular star tracker
design, we must consider both of these cases. Although the
two situations appear to be similar, there is an important dis-
tinction between them. In views with an insufficient number
of stars, the matching routines are aware they cannot provide
an attitude solution. In contrast, when only ambiguous pairs
are visible, the algorithms may give thewrong solution. Thus,
the second situation is much more serious than the first.

Our analysis is broken down into the following steps:

1. An exhaustive off-line search identifies all ambiguous
pairs in the catalog. These results are stored for
reference.

2. We discretize the celestial sphere using a generalized
spiral.20 This spiral generates a set of N, uniformly dis-
tributed bore-sight vectors, rk. For these trials we use
N¼ 105—this puts about 430 sample points in an area
size of the FOV (θFOV ¼ 7.5 deg). The separation
between points is approximately 0.7.

3. For each bore-sight vector, we calculate the number of
visible stars (i.e., Mi ≥ Mthresh), that lie closer than
θFOV to rk. If we have fewer than two stars, we record
this view direction in a list of bad views.

4. If there are two or more stars in the FOV, then we
choose pairs of stars until we find a pair that is unam-
biguous. If all the pair combinations are ambiguous,
then make note of this view.

The availability, A, is evaluated as a spatial fraction (rather
than a temporal fraction):

A ¼ Number of Good Views

Total Number of Views
. (17)

To make our results more readily comparable from one
design to another, we tabulate the fraction of bad views,
i.e., 1 − A.

These analyses were repeated for a range of different sen-
sor designs. The choice of specific cases was motivated by
the characteristics of the ST-16 design (see Sec. 2.1), and
the laboratory estimates of the centroid and color index
noise (i.e., σpix, σrg, and σbg obtained from McVittie and
Enright).4 The integrated difference in quantum efficiency
between color and monochrome detectors is equivalent to
a visual magnitude difference of approximately 1.25. Thus,
the design threshold of the ST-16, Mthresh ¼ 5.75, is equiv-
alent to a color sensor with Mthresh ¼ 4.50. We also consider
more sensitive yet plausible designs. Manual inspection of
ST-16 images reveal a number of magnitude 6.25 stars. Such
a sensor would have a corresponding color threshold
Mthresh ¼ 5.0.

The centroid position error, expressed in pixels, is related
to the arc-length error σφ by the following approximation:

σφ ≈ 2
γ

f
σpix: (18)

The γ∕f factor converts the error from pixels to radians
and the factor of two computes the diagonal error between
two measured centroids. Centroid noise captures the perfor-
mance of the centroid estimation routines. The two selected
values for the represent nearest-pixel accuracy (σpix ¼ 0.4),
and a modest degree of subpixel centroid refinement
(σpix ¼ 0.2).

The results from these trials can be seen in Table 1. The
most immediate observation is that no view has only ambigu-
ous pairs. This suggests that system availability is limited
by the sensitivity of the detector and optical design, not the
pair-based matching scheme. For each test case, we repeated
the analysis assuming that only monochrome information
was available. Virtually all of the catalog pairs are ambigu-
ous when compared solely on their separation. More impor-
tantly, these tests indicate a small but significant number of
unresolvable, ambiguous views. Additionally, increasing the
catalog size (e.g., by increasing Mthresh or θFOV), or increas-
ing the noise values, will also increase the number of
ambiguous star-pairs.

Several secondary observations can be made from these
data. The first few rows represent color sensors very close to
the reference optical design. Sensor performance for these
test cases is not terrible, but substantial areas of the sky
(16%) are still subject to bad views. The design solutions
with around 2% bad views offer much better availability
with optical designs only slightly different from the baseline
sensor. In particular, because we have successfully detected
magnitude 6.25 stars with the monochrome detector on the
ST-16, the solutions withMthresh ¼ 5 and θFOV ¼ 7.5may be
plausible without any hardware changes. Although a bad
view fraction of 2% is not negligible, that level of perfor-
mance may be acceptable for some missions. The best
availability is encountered with designs a little further
from the reference values. These cases demand an increase
in both θFOV and Mthresh. Such changes would require sub-
stantial alterations to the current optics (and possibly the
detector, too).

More generally, the relatively low number of ambiguous
pairs suggests that our color -based classifier provides good
discrimination between catalog tuples. Ambiguity rises with
both larger catalogs and increasing errors, indicating areas of
the design-space that should be avoided.

†This criterion is actually more conservative than it has to be. A variety of
additional inferences involving the distribution of ambiguous star-pairs
could help resolve many ambiguous observations.
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5.2 Simulation Experiments

Simulation of the entire matching process provides comple-
mentary results to the static catalog analysis. Applying the
pair-wise and scene matching algorithms to synthetic obser-
vation data allows us to generate estimates of real-world
performance.

Our simulations are designed to measure matching perfor-
mance over the entire sky. Instead of random orientations, we
start with the uniform grid of bore-sight directions, and con-
sider multiple roll angles for each case. A typical simulation
involves 106 inertial orientations, generated using 104 unique
bore-sight vectors. This corresponds to a density of approx-
imately 70 different bore-sight angles within the FOV of
the ST-16.

For each simulated orientation, we determine the stars that
would be visible to the sensor, and determine the observed
detector-frame star vectors sDi

. This process considers the
actual rectangular FOV of the sensor. In this study, we are
primarily interested in evaluating the matching performance
of our algorithms rather than detection behavior. Thus
instead of pixel level image simulation, we abstract the
detection process and generate star measurement vectors
directly (with appropriate direction and color index noise).
We use the following error model:

s̃Di
¼ sDi

þ nλ
ksDi

þ nλk
(19)

Λ̃rg ¼ Λrg þ nrg (20)

Λ̃bg ¼ Λbg þ nbg. (21)

The star vector noise, nλ, is distributed in a Rayleigh dis-
tribution around the true star vectors (uniform in direction,

effectively Gaussian in both axes perpendicular to the true
star direction). color index noise (i.e., nrg, nbg) is normally
distributed and zero-mean.4 A summary of the simulation
parameters is shown in Table 2.

If the simulated scene produces an acceptable match, the
sensor orientation is estimated using the Davenport’s q-
method,21 giving the estimate of the quaternion attitude q̂DI.
The net error in the estimate, ϕerr is the angle derived from
the error quaternion:

qerr ¼ qDI ⊗ q̂−1DI ; (22)

ϕerr ¼ 2 arccosðqserrÞ; (23)

where qserr is the scalar part of the error quaternion.
Figure 9 shows a plot of cumulative distribution in ϕerr

for the entire trial. About 90% of the tests have an error
of 0.01 deg or less; 99.3% of the trials had 1 deg or less.

Table 1 Color matching performance.

Test parameters

Catalog pairs
(×103)

Bad views
(%)

Color results
Monochrome
ambiguous
pairs (%)

Results
unresol.
pairsM thresh θFOV σpix ðσrg ; σbgÞ

Ambiguous
pairs (%)

Unresol.
pairs

4.5 7.5 0.200 0.020 7.8 15.92 0.26 0 99.77 44

4.5 7.5 0.408 0.020 7.8 15.92 0.84 0 99.99 187

4.5 7.5 0.408 0.050 7.8 15.92 3.86 0 99.99 187

4.5 10.0 0.200 0.020 13.6 2.75 0.19 0 99.88 9

4.5 10.0 0.408 0.100 13.6 2.75 8.11 0 99.99 9

5.0 7.5 0.200 0.020 24.7 2.19 0.71 0 100 8

5.0 7.5 0.408 0.020 24.7 2.19 2.41 0 100 154

5.0 10.0 0.200 0.020 42.9 0.05 0.60 0 100 0

5.0 10.0 0.200 0.100 42.9 0.05 5.79 0 100 0

5.0 10.0 0.408 0.100 42.9 0.05 20.63 0 100 0

Table 2 Simulation parameters.

Parameter Value

Total poses 106

Unique bore-sight vectors 104

σλ 55 × 10−6 μrad ð≈ 0.2 pixelsÞ

σrg ; σbg 0.05

M thresh 5.0

Half-angle FOV (minor axis) 7.5 deg
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While not particularly noteworthy performance for a star
tracker, it is consistent with the simulated centroid accuracy.

Understanding where the algorithm performs poorly
offers valuable insight. Table 3 provides a summary of the
problematic orientations (i.e., no match, or a match with high
error). These cases represent about 0.7% of the total trials.
Most of high-error solutions result from incorrect matching
assignments—only one test had both high error, and no
matching mistakes. A few cases exist in which a single cor-
rect star was matched, but these merely represent two similar
star-pairs with a common star. No cases appeared with two
or more correct matches, combined with one or more bad
matches, suggesting that the geometric consistency check of
Eq. (9) is functioning correctly.

We can identify several distinct types of problematic ori-
entations. Generally, matching failures that are diagnosable
as such are preferable to potentially incorrect matches:

• No solutions. The sensor matching routines were
unable to calculate a match that satisfied the consis-
tency criteria. The most common cause of this response
were scenes with fewer than two stars in the FOV.‡ This
class of problem is of least concern to us, since the
algorithms are aware of their inability to find a match.
Although there were 897 distinct orientations that
yielded no-match results there were only 49 unique
bore-sight vectors represented in these results. Thus,
no-match problems are strongly correlated with star-
poor areas of the sky.

• Poor matching. This arises from trials that returned a
candidate match solution using fewer than 40% of the
available stars. In almost all cases this was an incorrect,
two-star match result. We suspect that noise is the pri-
mary cause of these problems, but this type of result
requires further study. This type of result is more seri-
ous than the no-match case, but the low match percent-
age offers a convenient confidence metric by which we
can discard the estimates.

• Wrong matches (two and three stars). This class of
response results from an incorrect star-match solution
returned by the matching algorithm. Most of these
solutions report one matched pair, but a small number
of views report three matched stars. This type of
response would be very serious on-orbit, and the fre-
quency of occurrence (0.44%) is too high to be
neglected. Minimizing these errors is the focus of
ongoing research, but we note that raising the poor-
match threshold to 50% would halve the number of
results in this class.

Figure 10 shows the spatial distribution of problematic
orientations. The coordinates in the figure correspond to
the direction of the bore-sight axis in celestial (inertial) coor-
dinates. Each point represents one of the bore-sights evalu-
ated and the data aggregated over the whole set of bore-sight
angles. “Good” results have low error characteristics for all
roll angles. Any other marker represents the worst result for
that direction. Most matching difficulties occur in regions
of low star density (the band of the Milky Way follows a
rough sinusoid through the green region, starting from high
declination at the left side of the figure).

5.3 Field Testing

As a complement to our whole-sky simulations, we also con-
ducted a set of night-sky tests, evaluating the performance of
the color star matching algorithms with real detector images.
These tests rely on the complete processing chain from
image acquisition through attitude estimation.

Proper calibration is vital to the collection and interpre-
tation of precise star tracker measurements. Not only must
we remove the effects of optical aberrations using our con-
ventional camera calibration (see Sec. 2.2), but we must also
compensate for the influence of the Earth’s atmosphere on
stellar spectra and positions.
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Fig. 9 Simulation results showing cumulative distribution of error
angle.

Table 3 Simulation results.

Total problem orientations 7078

No solution 897

Poor match (<40% of available stars) 1763

Incorrectly matched stars

2 (incorrect) of 2 (total stars) 1013

2 of 3 1244

2 of 4 1247

2 of 5 905

3 of 4 2

3 of 6 4

3 of 7 3
‡Or two stars separated by more than the minor-axis arc-length.
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5.3.1 Color calibration

Ground tests of any star tracker will be affected by atmos-
pheric attenuation and refraction. These phenomena affect
detection thresholds and distort the inter-star geometry in
the images. Color matching routines must also deal with
wavelength-dependent atmospheric attenuation of the appar-
ent color indices of the observed stars.

As part of the field trials described by McVittie et al.,4 we
measured color ratios from 21 bright stars, three from each
primary spectral class. Figure 11 compares the measured
ratios to the expected values based on the theoretical sensi-
tivity of our detector and the reference spectra from the
Pickles catalog. The endpoints of each ‘bar’ on the figure
represent the observed and catalog values for the stars in
our survey. As a general trend, atmospheric attenuation and
dispersion reduce the observed response, particularly at
shorter wavelengths.

Slant path length (related to altitude and star elevation
relative to the Earth observation site), atmospheric aerosols,
and humidity can cause significant variations in astronomical
observations. As a full atmospheric correction model goes
beyond the current scope of work, we instead present a sim-
ple system that has proven useful in validating the color
matching as a proof-of-concept. Our proposed color correc-
tion is a six-parameter bilinear transformation of the form:�
Λ 0

rg

Λ 0
bg

�
¼

�
β1 β2
β3 β4

��
Λrg

Λbg

�
þ
�
β5
β6

�
; (24)

where (Λrg;Λbg) are the observed color ratios and βi are
the model coefficients. The model is a simple low-order
curve-fit, and the model parameters are not intended to be
physically meaningful. The fitting parameters are determined
using a least squares minimization, with any obvious outliers
removed from the dataset (see red data point in Fig. 11).
Figure 12 shows the calibrated dataset compared to the cata-
log values. Although the fit does not provide a perfect cor-
rection, it reduces the residual RMS color-error from 0.43
(uncorrected) to 0.10 (corrected). A comprehensive atmos-
pheric correction combined with larger sample set could see
this error reduced even further.

5.3.2 Atmospheric refraction

To minimize geometric distortions, the star vectors used in
these tests were corrected for atmospheric refraction. Using
a manual star match and the raw star vectors, we calculate
the inertial attitude CDI, of the sensor frame D. Refraction
may bias these estimates but not by more than a degree. From
the latitude, longitude, and time of the observations, we can
calculate the rotation, CIG, between the inertial frame I and
local topocentric frame G. The precise azimuthal definition
of T is immaterial, as long as the ‘up’ direction is clearly
understood. These two matrices give us the sensor-to-
topocentric rotation:

Fig. 10 Mollweide projection of spatial distribution of matching problems.
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Fig. 11 Observed color ratios.
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CDG ¼ CDICIG. (25)

Once we have calculated, CDT, the star vectors, sD can be
rotated to G, corrected for refraction using the formulae in
Bennett,22 and the resulting vector rotated back into D prior
to matching.

5.3.3 Matching tests

Once the color-calibration data were processed, we collected
a number of images in order to test the color -matching

routines. Due to limitations of the prototype sensor optics,
we had to make some adjustments to the instrument focus
to get consistent detection of star color. These modifications
increased the defocus of the prototype in order to provide
better sampling of the star point spread function (PSF). Good
detections were limited, to a relatively small region near the
centre of the detector. Consequently, we concentrate on a
small cluster of three known stars, specifically Orion’s belt.
Figure 13 shows the three stars of interest.

All three stars are bright and easily identifiable to the
naked-eye. As spectral-type O and B stars, they all have
strong blue-green response. In fact, both δ-Ori and ζ-Ori
map to the same reference spectra, and ϵ-Ori, is only slightly
different. These properties make this a challenging triplet of
stars to match. The observation data for the stars are shown
in Table 4. The Λrg ratios have low variability, but the Λbg
ratios remain higher than ideal (this catalog was designed for
σrg ¼ σbg ¼ 0.05). The mean of the color-corrected ratios is
fairly close to the predicted catalog values.

Table 5 shows the accuracy of the matching routines when
applied to our Orion observations (a total of 70 images). All
of the correct results, successfully matched all three stars; all
of the incorrect matches reported an incorrect pair of stars
(with the third star unmatched). The initial success rate of
50% is much lower than what would be suitable for a flight
instrument. Even attaining this modest performance relied on
relaxing the geometric constraint threshold [from Eq. (9)],
and increasing the values of σrg and σbg used in the catalog
look-ups to 0.1, from the design value of 0.05. To understand
this poor performance, we took a closer look at the observed
quantities we were using in the matching routines.

Our algorithms rely on accurate color and geometric mea-
surements. Biases in either quantity lead directly to increases
in Δ, and will impair our ability to match to the star catalog.
The critical Mahalanobis distance, Δ⋆, explicitly limits the
bounds of the search space. To investigate how these errors
contributed to our poor match success, we devised two ideal-
ized corrections. The first was a offset to each measured
color ratio, to bring the mean color ratio error to zero. The
second was correction to the measured arc-length φ between
δ-Ori and ζ-Ori (the longest arc), again bringing the mean
error to zero (the magnitude of this correction was approx-
imately 18 × 10−3 deg ). A final trial combined both ideal-
ized corrections. Although these corrections are artificial,
they isolate the separate effects of measurement noise and
systematic bias.

When the color and geometric corrections were com-
bined, the matching performance greatly improved. The geo-
metric correction is particularly significant because we have
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Fig. 12 Calibrated color ratios.
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Fig. 13 Stylized view of one of a field test image. Axes indicate
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used in the field trial.

Table 4 Field testing color ratios.

Star σrg σbg

Λbg Λrg

Raw Corrected Catalog Observed Corrected Catalog

δ-Ori 0.045 0.116 1.160 1.206 1.232 0.582 0.639 0.652

ϵ-Ori 0.038 0.096 1.116 1.156 1.161 0.598 0.663 0.674

ζ-Ori 0.030 0.081 1.123 1.166 1.232 0.580 0.652 0.652
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only corrected a single arc length (and not the position of
all three stars). Some simple laboratory tests suggest that
the geometric problems stem from chromatic aberration.
Our geometric camera calibration is conducted using a
fibre-coupled, 3000 K incandescent source. Replacing the
broadband calibration source with a blue light emitting
diode (ζ-Ori is much more blue than our broadband source),
introduced differential centroid motion very similar to the
observed geometric error. Some contributions to the mea-
surement bias are attributable to testing in the atmosphere
(e.g., color bias), whereas others represent limitations of
the prototype hardware (e.g., chromatic aberrations to geom-
etry). Careful attention must be paid to these factors in when
developing a revised color star tracker prototype.

Atmospheric scintillation is a likely cause for some of
the observed color and centroid noise. Observations made
with short exposures and small apertures (as in our sensor),
can see large amplitude variations between images, and sig-
nificant band-to-band variability as well.23 As an example,
separate experiments with the monochrome ST-16 show that
around 75% of the temporal centroid noise during field tests
is attributable to scintillation. This effect makes it very dif-
ficult to design a field test that assesses both noise perfor-
mance and matching effectiveness. Matching performance
during terrestrial tests will always need to deal with larger
color error than would be encountered on-orbit.

One final insight was gained from a careful inspection of
algorithm execution. The three stars observed in the field
test are very close in spectrum; two are identical and the
third only slightly different. As a result, it is common for
color noise to lead to a reversed star assignment, particularly
with the initial matched pair. With only a single pair of stars
in view, little more can be done to resolve the ambiguity. Our
algorithm does not use an explicit search and hence, cannot
backtrack through a star assignment. This approach is very
fast if we can make one correct initial match, but does not
deal well with situations where color-noise has reversed a
star assignment. An alternate implementation with a limited
amount of backtracking is currently under study, and is
expected to resolve this shortcoming.

6 Conclusions
In this paper, we have established a framework for the star
matching routines necessary for color -based star tracking.
Color star tracking is a novel concept that can be used to
leverage advances in commercial imaging systems to
develop new types of satellite attitude sensors. This tech-
nology can be employed in dedicated star trackers, or as a
contingency mode of operation for a payload camera. Our

approach combines coarse spectral information available
from a CMOS CFA detector and conventional inter-star
geometry. In many cases, the color and geometry of a single
pair of stars is sufficient for an unambiguous match.

The color star matching algorithms use a star-pair com-
parison based on a Mahalanobis-distance classifier. When
available, we match additional stars by employing a
RANSAC-derived consensus algorithm. The RANSAC ap-
proach is robust to false stars and other outliers. We have
also examined some of the practical challenges of star cata-
log organization, including color representation, choice of
data sources, and catalog formatting. A series of simulation
and field trials have validated the effectiveness of these
contributions.

Our experimental results are encouraging. Although the
reference point design is not well-suited for color applica-
tions, catalog analysis shows that evolutionary design
changes can lead to better performance. Comprehensive sim-
ulations demonstrate good accuracy and robustness in the
majority of sensor orientations; these tests also help to iden-
tify cases where the algorithm performance can be improved
to prevent incorrect matches. Finally, our field-tests demon-
strate that the matching routines will work with the noise
properties encountered in a real sensor.

Notwithstanding the positive outcomes of our tests, our
experiments do suggest the need for some crucial hardware,
software, and testing refinements. First, improved optical
performance is necessary for future sensors. Better achro-
matic optics and explicit color corrections in the sensor cal-
ibrations represent promising initial paths to achieving this
goal. Second, although the bilinear color corrections improve
the correspondence between catalog and measured color
values, better approaches are necessary to reduce residual
errors. Finally, we recognize that the need for complicated
corrections for local terrestrial viewing conditions would
make validation of any flight-instrument troublesome. An
adaptive, on-line algorithm in which the sensor gradually
learned the specific color ratios for each cataloged star or
spectral type is currently under investigation.

We recognize that the algorithms and optical designs
presented here are not optimal. Rather they demonstrate
the essential feasibility of this novel star tracking concept.
Measurements from simple color cameras can be used to
match stars. Although color sensors are not as sensitive as
their monochrome counterparts, the information gain from
color information makes two-star lost-in-space solutions
practical. We feel that performance in these tests is quite
promising and that the next generation of color star trackers
will provide performance competitive with traditional mono-
nchrome sensors.
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