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1 Introduction
Recent advances in manufacturing methods for gradient
index optical components would benefit from being accom-
panied by nondestructive metrology techniques that are
faster than current precision interferometric methods.
Manufacturers require measurement of the spatially varying
refractive index profiles in these components to evaluate
parts and processes and to locate and orient the index distri-
bution for cutting and forming. This paper describes tech-
niques using geometric optics to reconstruct the refractive
index distribution in a sample based on measurement of
laser beam displacement, deflection, and, to a lesser degree,
mode conversion after passing through samples with axial,
radial (cylindrical), or spherical gradients of refractive
index. Although one could imagine a number of implemen-
tations, the general scheme would likely involve a laser, a
series of scattering surfaces such as partially scattering
screens or even surface fogging or other temporary surface
coatings, and an imaging device. By imposing controlled rel-
ative motion of the apparatus and the sample, the laser would
pass into the sample at a series of entry points and angles,
perhaps measured via images of scattering at the entry sur-
face. Images of scattering of the emergent beam at surfaces
on the far side of the sample would allow calculation of the
exit location, angle, and possibly the mode shape.

Ray paths confined to a plane, as occur in a plane of
refractive index symmetry, obey

−
ny 0 0

1þ y 02 ¼
∂n
∂x

y 0 −
∂n
∂y

; (1)

where n is the index of refraction, the ray path is defined by
y ¼ yðxÞ, and primes indicate differentiation with respect to
x (e.g., Ref. 1). For axial, radial, and spherical gradients of
refractive index, Eq. (1) reduces to an ordinary differential
equation. Integration of the resulting equation results in a
relationship between the refractive index distribution and
the ray paths that can be exploited to estimate the refractive
index distribution based on measurements of laser beams
passing through the media. The methods presented here

do not rely on measurement of the full path of the beams
through the media. They use only the beam conditions at
the entry and exit points measurable from outside the media.
Beam position, direction, and mode shape are considered. If,
due to scatter in the media, the entire beam path can be
observed and measured, the index all along the beam path
relative to that at beam entry can be directly calculated
using the local slope of the ray path.

Due to similarities in symmetry, radial gradients behave
like spherical gradients when viewed normal to the axis of
symmetry and like axial gradients when viewed along the
axis of symmetry. Therefore, the following three cases suf-
fice to cover the three basic gradient structures: axial viewed
normal to the gradient, axial viewed parallel to the gradient,
and spherical. The methods are constructed using basic
manufacturing shapes for optical blanks (slabs for the
axial gradients, rods for the cylindrical gradients, and spheres
for the spherical gradients); however, as long as the cut sur-
face shape is known, the methods apply equally to finished
components.

Previous work by others, beginning in 1893 with Wiener,2

includes examining index reconstruction

• by known ray paths through the full span of a planar or
arbitrary medium3,4;

• for planar wave-guides with fixed index faces5;
• for thin medium, small displacement, normal beam

incidence6; and
• for cylindrical fiber preforms.7

2 Axial Gradient Across a Slab
For this case (see Fig. 1), Eq. (1) reduces to

−
y 0 0

y 0ð1þ y 02Þ ¼
1

n
dn
dx

; (2)

which can be integrated to produce
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1þ 1
y 02

1þ 1
y 02
0

¼ n2ðxÞ
n20

; (3)

or using Snell’s law

1þ 1
y 02

1þ 1
ŷ 02
0

¼ n2ðxÞ
n2a

;

where n0 is the index of refraction on the entrance face, na is
the ambient index, and y 0

0 and ŷ
0
0 are the internal and external

entrance slopes, respectively. [This paper adopts the notation
that external slopes (related by Snell’s law to internal slopes)
are represented by a “^”.] Equation (3) indicates that the local
slope of a ray path with given entrance conditions will
depend only on the local index of refraction and the index
and slope at the entry face. Equation (3) is equivalent to
Snell’s law invariant along any ray, n2 sin2 θ ¼ constant,
where θ is the angle between the ray and the x-axis and
where the surface normal in Snell’s law has been replaced
by the refractive index gradient, which is normal to the
iso-indicial surfaces. Measurement of the exit slope would
allow direct calculation of the index on the exit face.
Further integration of Eq. (3) across the thickness of the
slab yields

Δy ≡ y1 − y0 ¼ �
Z

t

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðxÞ
n2
0

�
1þ 1

y 02
0

�
− 1

r : (4)

Because the angular deflection and vertical displacement
of the beam will not depend on initial vertical position, the
mode shape of a beam will be preserved through the slab,
and no additional information can be obtained using beam
mode shapes. The deflection of the beam y 0

1ðy 0
0Þ depends

only on the exit index, not on the interior variation. Only
the variation of displacement Δy with the entrance slope
will provide information about the interior index profile.
Without loss of generality, what follows uses only the pos-
itive version of Eq. (4) corresponding to y 0

0 ≥ 0.
Two basic approaches to solving Eq. (4) could be con-

sidered. Particularly in a manufacturing metrology setting
where the element has a known target index profile, an

iterative approach to solving a discrete version of Eq. (4)
would probably be appropriate. In such an approach, the
postulated index distribution would be iteratively adjusted,
starting with an initial guess given by the target profile
to minimize the magnitude of the residual between the
measured beam displacement and that predicted by the
evaluation of the right-hand side of Eq. (4) using the postu-
lated index distribution.

Alternatively, one could attempt to construct the profile
directly. An analytic approach is possible using methods
of integral equations under limiting assumptions about the
profile. For instance, if the profile is assumed to be mono-
tonic with position [so that nðxÞ can be inverted to xðnÞ], the
following transformation could be applied (without loss of
generality assume n1 > n0):

ζ ≡
−n20

1þ y 02
0

η ≡ n2ðxÞ − n20

fðζÞ ≡ Δy½y 0
0ðζÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ þ n20
p ¼

Z
t

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðxÞ − ζ − n20

p
¼

Z
n2
1
−n2

0

0

gðηÞdηffiffiffiffiffiffiffiffiffiffi
η − ζ

p ; (5)

where

gðηÞ ≡ dx
dη

:

nðxÞ can be reconstructed if gðηÞ is known by inverting

xðnÞ ¼
Z

n

0

2ngðn2 − n20Þdn:

Equation (5) theoretically has an analytic solution,8

gðηÞ ¼ −1ffiffiffiffiffi
8π

p
Γ2
�
3
4

�
η
1
4

d
dη

�Z
n2
1
−n2

0

η

dvffiffiffiffiffiffiffiffiffiffiffi
v − η

p
Z

v

0

fðζÞdζ
ζ
1
4ðv − ζÞ14

�
:

(6)

Unfortunately, note that ζ < 0 and the innermost integral
must take positive values from 0 to n21 − n20. Alternatively, for
inverting a finite set of measurements (m ¼ 1: : :M), a piece-
wise construction of the index using any explicitly integrable
functional form for the segments would yield the set of M
nonlinear equations

fðζmÞ ¼
XK
k¼1

Z k
Kt

ðk−1Þ
K t

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2kðxÞ − n20 − ζm

p : (7)

By choosing the number of segments such that the total
number of unknowns is equal to or less than the number of
measurements, the system could be solved using standard
methods. This second method closely resembles the first,
although in the first method, numerical integration and
any reasonably parameterized form of index profile could
be used. With the first method, care must be taken to ensure

Fig. 1 Horizontal axial gradient schematic.
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a well-posed problem because an index profile form with
more parameters than the number of measurements would
be under-constrained and therefore not have a unique
solution.

3 Axial Gradient Along a Slab or Cross-Section of a
Radial Gradient

For this case (see Fig. 2), Eq. (1) reduces to

ny 0 0 ¼ dn
dy

ð1þ y 02Þ: (8)

Examination of Eq. (8) reveals that the ray path is depen-
dent only on the local logarithmic derivative of the index
of refraction. A boundary condition on the index must
be known to solve for the absolute index of refraction.
Integration of Eq. (8) yields

1þ y 02

1þ y 02
0

¼ n2ðyÞ
n20

: (9)

Therefore, the measurement of the entrance and exit
slopes of the beam directly gives the ratio of indices at
the beam entry and exit points. The measurement of the
slope could, e.g., be done with two partly scattering screens
at different known distances from the beam exit. Equation (9)
expresses the same invariant as Eq. (3) in a rotated reference
frame, where the iso-indicial surfaces are now normal to the
y-axis. In principle, Eq. (9) with data from a sweep over the
full height of the slab would enable what amounts to numeri-
cal integration of the index (assuming as a boundary condi-
tion a region of known index).

Rearranging Eq. (9) and integrating yields

t ¼
Z

y1

y0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ y 02

0

�
n2ðyÞ
n2
0

− 1

r ; (10)

presuming the rays are monotonic in y and, without loss of
generality, that y1 > y0. Measurement of the displacement
(y0 and y1) gives a second relationship with information
about an integrated function of index along the ray path.
Measurement of exit angle and displacement—two scalar

quantities—does not provide enough information to deter-
mine the function nðyÞ along the ray path between y0 and
y1 but could be used to evaluate two parameters of a local
approximation to an index profile.

In the ray-optic approximation, mode conversion is like a
distributed or convolved version of beam displacement.
Instead of a ray, we now have an intensity distribution at
each face of the slab, I0ðyÞ, I1ðyÞ. For the axial case (the
cylindrical case is more complicated due to off-axis rays
from finite beam width and is beyond the scope of the current
work), assuming the index of refraction and intensity distri-
bution are continuous and smooth and that the incident beam
has parallel rays, we have

I1½y0 þ dðy0Þ� ¼
I0ðy0Þ

1þ d 0ðy0Þ
; (11)

where dðy0Þ ≡ y1–y0 is the displacement of a ray and
depends on the index distribution and the incidence angle.
Equation (11) becomes singular if there is a focal point at
y1. In this manner, intensity measurement is a proxy for
displacement measurement, only making displacement mea-
surement more complicated. However, it may be that either
the beams used are inherently wide compared with the
measurement precision, meaning one could not escape
making mode-shape measurements, or that due to precision
differences in displacement measurement and intensity
measurement, there would still be an advantage to the latter.
In any case, Eq. (11) could be useful to predict mode
conversion effects based on displacement. Making multiple
measurements per beam position (mode characteristics,
displacement, and angular deflection) could allow some
reduction in measurement-driven errors. For normally
incident Gaussian beams with small displacements (single
parameter fit to index distribution over any given beam
path), published calculations show detailed wave-optic pre-
dictions of mode conversion.6

3.1 Index Profile Computation

3.1.1 Deflection-only method

It may be useful to reframe Eq. (9) in its analytically distilled
form to understand how it might lead to computation of
index profile. Equation (9) evaluated at the exit side of the
slab

1þ y 02
1

1þ y 02
0

¼ n21
n20

(12)

has measured quantities on the left-hand side and values of
the unknown index profile on the right-hand side. Taking the
natural logarithm of both sides and calling

gðy0Þ ≡ ln

�
1þ y 02

1

1þ y 02
0

�

and

ζðyÞ ≡ 2 ln nðyÞ

yieldsFig. 2 Vertical axial gradient schematic.
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gðy0Þ ¼ ζ½y0 þ dðy0Þ� − ζðy0Þ: (13)

Presuming that ðdy1∕dy0Þ > 0 (which is satisfied if there
is no ray crossing the medium) and the index is known either
along an interval [y0, y0 þ dðy0Þ] or at a point where
ðdn∕dyÞ ¼ 0, the index could be calculated everywhere [cal-
culating each successive value of ζ from previously known
values, where the value in Eq. (13) that would be previously
known depends on the sign of d]. Equation (13) could be
approached analytically (see Appendix), but, in practice,
the progressive sweep described here or any finite element
method suited to linear relationships like Eq. (13) is more
likely to be useful.

3.1.2 Displacement only and mixed methods

Equations (10) and (12), together with measurements of d
and y 0

1, form a basis for index determination. Because
Eq. (10) is not analytically integrable for all nðyÞ, index pro-
file estimation requires some numerical approximation. The
approaches to approximating solutions to Eq. (10) can take
the form of assuming properties, such as piecewise linearity,
of the index profile or properties of the ray paths. These
approaches are joined by assumptions about small displace-
ments relative to the index gradient or thin slabs.

Approximation A: For the special case where the inci-
dent ray is almost normal to the slab surface, it is useful
to rewrite Eq. (10) as

t ¼
Z

dðy0Þ

0

dΔyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y 02

0

p nðyÞ
n0

− 1
ih ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y 02
0

p nðyÞ
n0

þ 1
ir :

(14)

For ½nðyÞ − n0�∕n0 ≡ ñðyÞ ≪ 1 and y 0
0 ≪ 1, Eq. (10) can

be approximated by

t ≈
Z

dðy0Þ

0

dΔyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 02
0 þ 2ñðyÞ

p : (15)

Approach 1: Linear index over the displacement of any
given ray. If fractional index changes are small over length
scales of the order of the slab thickness, rays deflect only
a small amount and therefore traverse indices of the order
of the index at the entry point. Assume the index profile
encountered by any given ray can be well approximated
by a linear function:

nðyÞ ¼ an0ðy − y0Þ þ n0: (16)

Plugging this form into Eq. (10) yields

t ¼
Z

dðy0Þ

0

dΔyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ y 02

0 Þða2Δy2 þ 2aΔyþ 1Þ − 1
p : (17)

Integration yields [Wolfram’s online Integrator Engine
(http://integrals.wolfram.com/index.jsp)]

�
1þ y 0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y 02

0

p �
eat

ffiffiffiffiffiffiffiffiffi
1þy 02

0

p
¼ ð1þ adÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ adÞ2 − 1

1þ y 02
0

s
;

(18)

which cannot be solved explicitly but can readily be solved
numerically for a. This solution would yield a piecewise
linear solution to the index, which would in general not be
precisely compliant with Eq. (12).

Equation (17) can be reduced to Eq. (15) under the
assumptions of Approximation A, noting that ñ ¼ aΔy
for this case, and then integrated and solved for the local
index gradient

a ¼ 2

t

�
d
t
− y 0

0

�
: (19)

As with Eq. (18), this overconstrains the independently
measured ray exit slope (unless the true index profile is lin-
ear). Under these approximations of a linear index profile
with small angle of incidence and small index change over
the ray path, the ray path internal to the slab will be given by

y ¼ 1

2
ax2 þ y 0

0xþ y0;

so these approximations are equivalent to assuming para-
bolic ray paths as proposed by Barnard and Ahlborn.9

Approach 2: Quadratic index over the displacement
of any given ray. The quadratic approximation has the
advantage that the number of unknown parameters matches
the number of measurements:

nðyÞ ¼ n0aðy − y0Þ þ n0bðy − y0Þ2 þ n0: (20)

I am unaware of an explicit solution of Eq. (10) emerging
from this form; however, under Approximation A [Eq. (15)]
with

ñ ¼ aΔyþ bΔy2;

t ¼
Z

dðy0Þ

0

dΔyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 02
0 þ 2ðaΔyþ bΔy2Þ

p ; (21)

which yields (Wolfram Integrator)

t
ffiffiffiffiffiffi
2b

p
¼ ln

aþ 2bdþ ffiffiffiffiffiffi
2b

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 02
0 þ 2ðadþ bd2Þ

p
aþ y 0

0

ffiffiffiffiffiffi
2b

p : (22)

Equation (22) could be solved numerically, together with
the Approximation A equivalent of Eq. (12),

y 02
1 ¼ y 02

0 þ 2ðadþ bd2Þ: (23)

Other approximations. While this type of approach could
theoretically be extended to higher-order polynomial approx-
imations to the local index profile (representing Taylor series
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expansions), there would not be enough measurements to
evaluate the parameters of such a framework. An alternative
would be to look at different expansions of the local index
profile, particularly those admitting explicit integration of
Eq. (10). A one-parameter example of such would be an
exponential profile; however, a two parameter alternative
would allow the exit slope and displacement measurements
to be both used without over-constraining the problem.
Published work includes a list of explicitly integrable
axial index distributions (e.g., Ref. 5).

3.2 Refraction at Interfaces

This analysis has so far given results in terms of the ray
slopes just inside the surface. Discrete refraction at the sur-
face in accordance with Snell’s law,

n1 sin θ1 ¼ n2 sin θ2

relates the internal entrance and exit slopes, y 0
0 and y 0

1 to the
measurable slopes just outside the slab surface,ŷ 0

0 and ŷ 0
1.

Rewriting Snell’s law in terms of slopes leads to

y 0
i ¼

na
ni
ŷ 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�
1 − n2a

n2i

�
ŷ 02
i

r ; (24)

where na represents the ambient index of refraction and i is
either 0 or 1. Combining Eqs. (24) and (12) leads to

n21 ¼ n20 þ n2a

�
ŷ 02
1

1þ ŷ 02
1

−
ŷ 02
0

1þ ŷ 02
0

�
; (25)

which is equivalent to the deflection relation, Eq. (12),
directly in terms of measurable slopes. The similar equiva-
lent of Eq. (10), the displacement relation, is

t ¼
Z

y1

y0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þŷ 02

0

n2
0
þðn2

0
−n2aÞŷ 02

0

�
n2 − 1

r : (26)

Note that for normal incidence, there is no refraction at
the entrance surface.

4 Radial or Spherical Gradients
Due to symmetry, the rays in a planar circular slice through a
radially symmetric cylinder will remain in the plane of the
slice. In a concentric spherical medium (see Fig. 3), ray paths
will all remain in the plane they share with the center of the

sphere and they will be identical to those in a cylindrical
medium with the same radial index dependence.

For this case, Eq. (1) reduces to

d ln n
dr

¼ rr 0 0 − 2r 02 − r2

rðr2 þ r 02Þ ; (27)

where primes indicate differentiation with respect to θ along
a ray. Integration of Eq. (27) yields

dr
dθ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðrÞr4
n20R

4
ðR2 þ r 020 Þ − r2

s
; (28)

where R is the outer radius of the element, n0 is the index on
the outer boundary, and r 00 is dr∕dθjr¼R. In dimensionless
terms, letting

n̂ ≡
n
na

; r̂ ≡
r
R
;

where na is the ambient index of refraction,

dr̂
dθ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2ðr̂Þr̂4

n̂20
ð1þ r̂ 020 Þ − r̂2

s
: (29)

Hence, for the radially symmetric medium as with the
planar media, the local ray slope is dependent only on
the boundary condition and the local index of refraction,
not the intermediate path. The sign ambiguity emerges
from the symmetry of the inbound and outbound paths in
the medium.

Previous work on radially symmetric media limited
investigation to azimuthally complete media, such as fiber-
optic preforms. For manufacture of spherical shell sections,
such as hemispherical lens components, exposed surfaces
provide an opportunity to use the deflection technique
embodied in Eq. (29) to directly measure the refractive
index profiles.

For azimuthally complete media (full spheres or cylin-
ders), the only accessible surface has a uniform index of
refraction, and therefore nothing can be learned from the
angle of the emerging beam relative to the surface (deflec-
tion). Displacement in the radial realm measures the differ-
ence in azimuth between the entry and exit points of the
beam. To integrate Eq. (29) into the displacement relation,
one must first identify the innermost transit point of the
beam, r̂�, where symmetry dictates dr̂∕dθ ¼ 0. This satisfies
the relation

r̂� ¼ n̂0
n̂�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r̂ 020

p ; (30)

where n̂� is the relative index at r̂�. In terms of angle of inci-
dence ϕ̂, where the initial internal angle ϕ after refraction is
given by Snell’s law,

n̂0 sin ϕ ¼ sin ϕ̂; cot ϕ ¼ dr̂
dθ

����
r̂¼1

:
Fig. 3 Spherical gradient schematic.
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In these terms, Eqs. (29) and (30) can be written as

1

r̂
dr̂
dθ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2r̂2 csc2 ϕ̂ − 1

q
(31)

and

n̂�r̂� ¼ n̂0 sin ϕ ¼ sin ϕ̂; (32)

indicating that the behavior is scale invariant. The angle of
the ray with the local gradient, ψ , is given by

cot ψ ¼ 1

r̂
dr̂
dθ

:

In terms of this angle, the invariant of Eq. (31) can be
written as

sin2 ϕ̂ ¼ n̂2r̂2 sin2 ψ ; (33)

equivalent to that in Ref. 10 or 1.
Integration of Eq. (31) from the outer boundary to r̂� and

back yields

Δθ ¼ �2

Z
1

r̂�

dr̂

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2r̂2 csc2 ϕ̂ − 1

q : (34)

Index reconstruction proceeds as follows. Let

ζðr̂Þ ≡ n̂ðr̂Þr̂: (35)

Suppose ζðr̂Þ is a one-to-one mapping. Substitution of
Eq. (35) into Eq. (34) yields

Δθðφ̂Þ ¼ �2 sin ϕ̂

Z
n̂0

sin φ̂

f 0ðζÞdζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − sin2 ϕ̂

q ; (36)

where

fðζÞ ≡ ln r̂ðζÞ: (37)

In a practical scanning system, a beam parallel to the x-
axis will be translated along the y-axis. Letting the position
of the beam be

ŷ ≡
y
R
¼ sin ϕ̂ (38)

and considering the negative instance of Eq. (36) (e.g., rays
above the x-axis traveling in the positive x-direction), multi-
plication and integration in a manner similar to that of an
Abel integral transform yields

Z
1

ζ

ΔθðŷÞdŷffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ¼ −
Z

1

ζ

Z
n̂0

ŷ

2ŷf 0ðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − ŷ2

p dτdŷ:

(39)

Switching the order of integration and presuming n̂0 > 1,

−
Z

1

ζ

ΔθðŷÞdŷffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ¼
Z

1

ζ

Z
τ

ζ

2ŷf 0ðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − ŷ2

p dŷdτ

þ
Z

n̂0

1

Z
1

ζ

2ŷf 0ðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − ŷ2

p dŷdτ

¼
Z

1

ζ
f 0ðτÞ

�
−tan−1

�
τ2 þ ζ2 − 2ŷ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − ŷ2

p ��
τ

ŷ¼ζ

dτ

þ
Z

n̂0

1

f 0ðτÞ
�
−tan−1

�
τ2 þ ζ2 − 2ŷ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − ŷ2

p ��
1

ŷ¼ζ

dτ:

Applying the boundary condition fðn̂0Þ ¼ 0 and
rearranging yields

fðζÞ ¼ 1

π

Z
1

ζ

ΔθðŷÞdŷffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷ2 − ζ2

p þ 1

2
fð1Þ

−
1

π

Z
n̂0

1

f 0ðτÞtan−1
�

τ2 þ ζ2 − 2

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 1

p
�
dτ: ð40Þ

From Eqs. (32) and (38),

ζ� ≡ n̂�r̂� ¼ ŷ: (41)

Equation (41) indicates that from the tangential ray at ŷ ¼
1 to the normal ray at ŷ ¼ 0, each ray penetrates progres-
sively deeper into the medium so that reconstruction of
the refractive index profile at position ζ ¼ ŷ in Eq. (40)
depends only on the measured displacement of rays corre-
sponding to greater values of ŷ. However, finite surface
refraction when the medium has an index of refraction
greater than ambient prevents progressive interrogation up
to the surface. From Eq. (32), even a ray tangent to the sur-
face (sin ϕ̂ ¼ 1) penetrates to ζ ¼ 1. Thus, for every incident
ray, the effect of the medium from the boundary to ζ ¼ 1
manifests only in an aggregated fashion. As a result, unless
the ambient index of refraction matches or exceeds the sur-
face index of refraction, displacement results will not allow
reconstruction of any part of the index profile. Each of the
innumerable outer profiles (surface to ζ ¼ 1) satisfying the
observed aggregate behavior would lead to a different recon-
structed inner profile [For the lens design problem, which is
the inverse of the metrology problem described herein (given
a set of desired ray displacements, what index would be
needed), Eq. (40) implies that the refractive index profile
from the boundary to ζ ¼ 1 could be chosen arbitrarily
and the profile from ζ ¼ 1 to the center would follow].
For a medium immersed in index matched fluid, the last
two terms in Eq. (40) vanish, and the full index profile
can be reconstructed.

Returning to azimuthally incomplete media, which would
allow beam exit from boundaries of varying refractive index
(e.g., a lens cut from a spherically symmetric distribution or a
hemisphere or hemispherical shell), Eq. (33) allows direct
index reconstruction. If the boundary of the medium is
along a radial line (normal to the iso-indicial surfaces), the
external exit angle relative to the surface normal α̂ gives
the following relationship for deriving the index at the exit
point:
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n̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 α̂þ sin2 ϕ̂

r̂2

s
: (42)

This would allow the nondestructive evaluation by the
deflection method of hemispherical lens preforms or the like.

Mode conversion for the spherical case is more compli-
cated because finite beam width leads to rays in different
planes of refractive index symmetry. Treatment of such is
beyond the scope of this work.

5 Accuracy
Any implementation of the methods described here will have
two sources of error: projection error and measurement error.
Relying on a finite number of discrete measurements, the
methods will produce reconstructed index distributions char-
acterized by a finite number of parameters. Calculation of the
index distribution from the measurements amounts to a pro-
jection of the true distribution onto the more limited function
space of the finite parameter representation. The first source
of error is the difference between the true distribution and its
projection, and, for each method described here, the error
will depend on the set of independent measurements taken,
the form of the true distribution, and the finite parameter
representation. For instance, for a continuous distribution
well sampled by the measurements and a piecewise-linear
representation, the projection error should be

εprojection ∼ δ2n 0 0; (43)

where δ is the size of the linear segments and n 0 0 is the sec-
ond derivative of the index profile.

Measurement error comprises random measurement error
reducible through redundant measurement as well as system-
atic measurement error. Redundant measurement could
take the form of displacement and deflection techniques
used together. The magnitude of the measurement errors
will depend on the particular measurement technique and
setup, but the sensitivity of the reconstructed profile to
these errors can at least be estimated from the equations
used for reconstruction. However, the integral equations
do not readily lend themselves to analytic evaluation of
the sensitivity derivatives, so the sensitivity would, in gen-
eral, need to be evaluated numerically. Sensitivity will also
depend on the index profile. These complexities make it
difficult to generically characterize the sensitivity of these
methods. For a specific example, Lin et al. examine sensi-
tivity of an implementation of the deflection method for
axial gradients along a slab.11

6 Conclusion
For media with axial, cylindrical, or spherical distributions of
refractive index, a ray slope invariant [Eqs. (3), (9), and (33)]
allows the use of ray deflection as a means of measuring the
index of refraction at the exit point as a function of the index
of refraction at the entrance. This means of measurement is
only useful when surfaces of varying index are exposed, in
which case approximate reconstructions of the index profile
are possible with a finite number of measurements. Ray
displacement and beam mode conversion also capture infor-
mation about the index distribution and can be used to
reconstruct or help reconstruct the index distribution. For
azimuthally complete spherical gradients or radial gradients
viewed normal to the axis of symmetry, index reconstruction
is only possible in an index-matching fluid. For the other
cases considered, numerical approaches are required, but
index reconstruction is possible. Table 1 summarizes these
results. The analysis here provides a survey of the derivations
and proposed solution methods for these approaches with an
eye toward metrology applications for gradient index lens
manufacture.

Appendix: Solution to Beam Deflection Angle
Method
Beginning with Eq. (13), the general problem consists of
finding ζðyÞ satisfying
ζ½yþ dðyÞ� − ζðyÞ ¼ gðyÞ; (44)

given gðyÞ and dðyÞ. Equation (44) is like a continuous
version of a difference equation. In that vein, the solution
can be separated into a homogeneous and a particular solu-
tion,

ζðyÞ ¼ ζhðyÞ þ ζpðyÞ;

where the homogeneous solution satisfies

ζh½yþ dðyÞ� − ζhðyÞ ¼ 0: (45)

Suppose there are two solutions to Eq. (44), ζ1ðyÞ and
ζ2ðyÞ. Taking the difference between the two versions of
Eq. (44), one with each solution plugged in,

Δζ½yþ dðyÞ� − ΔζðyÞ ¼ 0;

where ΔζðyÞ ≡ ζ1ðyÞ − ζ2ðyÞ. Thus, any solutions to
Eq. (44) differ by a homogeneous solution. Therefore, find-
ing any particular solution and adding it to the general
homogeneous solution will provide a complete solution to

Table 1 Summary of relations in uniform terms with ψ indicating the angle between the ray and the index gradient.

Displacement Deflection Mode shape

Axial across slab Δy ¼ �∫ t
0dx∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2ðxÞcsc2 ψ̂0 − 1

p
Invariant Invariant

Axial along slab t ¼ ∫ y1
y0
dy∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2ðyÞ∕½n̂2

0 − cos2 ψ̂0� − 1
q

n̂2
1 ¼ n̂2

0 þ cos2 ψ̂1 − cos2 ψ̂0 I0ðy0Þ∕I1ðy1Þ ¼ ∂y1∕∂y0

Spherical Δθ ¼ �2∫ 1
r̂ �dr̂∕r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2 r̂ 2 csc2 ψ̂ − 1

p
, sin2 ψ̂ ¼ n̂ðr̂ �Þ2 r̂ �2 sin2 ψ̂ ¼ n̂2 r̂ 2 sin2 ψ Out-of-scope
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Eq. (44). By inspection, the general solution to Eq. (45)
(guaranteeing only continuity) is any periodic function trans-
formed over successive periods by the known function dðyÞ
as long as ðd∕dyÞ½yþ dðyÞ� > 0. Let hðyÞ ≡ yþ dðyÞ.
Taking an arbitrary starting point ya and defining an arbitrary
periodic function ϕðyÞ over [ya, ya þ dðyaÞ],

ζh ¼

8>>><
>>>:

ϕðyÞ
ϕ½h−1ðyÞ�
ϕfh−1½h−1ðyÞ�g
..
.

ya ≤ y < hðyaÞ
hðyaÞ ≤ y < h½hðyaÞ�
..
.

..

.

: (46)

Because of the degrees of freedom inherent in the arbi-
trary periodic function, the boundary condition necessary
to determine a solution uniquely must define the value of
ζðyÞover a full interval [ya, ya þ dðyaÞ]. Such a boundary
condition would reduce the solution of Eq. (44) immediately
to a recursive form like Eq. (46).

A particular solution can be identified using a Green’s
function approach. Let

u½hðyÞ; ỹ� − uðy; ỹÞ ¼ δðy − ỹÞ; (47)

where δðyÞ is the Dirac delta function. Let

hnðyÞ ≡
hðhfh½: : : hðyÞ: : : �gÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n nested compositions

and likewise for h−nðyÞ as n nested compositions of h–1ðyÞ.
Two particular solutions to Eq. (47), differing, as required,
by a function of the form of Eq. (46), are

uðy; ỹÞ ¼
X∞
n¼1

�δ½h∓nðyÞ − ỹ�; (48)

both of which are forms of Dirac combs (picket fence) on a
half space.

To construct ζpðyÞ, integrate Eq. (47) times the right-hand
side of Eq. (44),Z

∞

−∞
gðỹÞðuðhðyÞ; ỹÞ − uðy; ỹÞÞdỹ ¼

Z
∞

−∞
gðỹÞδðy − ỹÞdỹ

¼ gðyÞ: (49)

Comparing the terms of Eqs. (49) and (44) reveals that

ζpðyÞ ¼
Z

∞

−∞
gð~yÞuðy; ~yÞd~y: (50)

Taking the Green’s function from Eq. (48),

ζpðyÞ ¼
Z

∞

−∞
gðỹÞ

X∞
n¼1

�δ½h∓nðyÞ − ỹ�dỹ ¼ �
X∞
n¼1

g½h∓nðyÞ�:

(51)

If either g½hnðyÞ� or g½h−nðyÞ� is appropriately convergent,
then a solution has been identified. If, as may often be the

case, on at least one end of the slab, the index becomes
homogeneous, then

lim
n→∞

g½h�nðyÞ� ¼ 0; (52)

and the convergence of Eq. (51) is possible. The index profile
follows from

nðyÞ ¼ eζðyÞ∕2: (53)

The solution method above guarantees that, for smooth
ϕðyÞ, ζðyÞ will be at least as smooth as gðyÞ within each
interval [hnðyaÞ, hnþ1ðyaÞ]. Guaranteeing smoothness across
the interval boundaries would further constrain the solution.
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