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Abstract. We propose a novel human detection approach that combines
three types of center symmetric local binary patterns (CS-LBP) descriptors
with a cascade of random forests (RFs). To detect human regions in a low-
dimensional feature space, we first extract three types of CS-LBP features
from the scanning window of a downsampled saliency texture map and
two wavelet-transformed subimages. The extracted CS-LBP descriptors
are applied to a three-level cascade of RFs, which combines a series
of RF classifiers as a filter chain. The three-level cascade of RFs with
CS-LBPs delivers rapid human detection with higher detection accuracy,
as compared with combinations of other features and classifiers. The pro-
posed algorithm is successfully applied to various human and nonhuman
images from the INRIA dataset, and it performs better than other related
algorithms. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attri-
bution of the original publication, including its DOI. [DOI: 10.1117/1.OE.52.2.027204]

Subject terms: human detection; center symmetric local binary patterns; saliency
texture map; random forest; wavelet transform; three-level cascade.

Paper 121330 received Sep. 18, 2012; revised manuscript received Nov. 18, 2012;
accepted for publication Jan. 2, 2013; published online Feb. 4, 2013.

1 Introduction
Human detection in images and videos is an essential step in
dynamic computer vision for many applications, including
video surveillance, human action recognition, and content-
based image/video retrieval. As a result, human detection
and face detection has received widespread interest during
the last decade, based on the visual features of humans
and several pattern classifiers. However, human detection
in images is a more challenging task than face detection
because of the following problems.1

• The wide variability in appearance due to human
clothing.

• Variations in the illumination of images due to day and
night lighting, light reflections, and shadows.

• Wide range of human poses and partial occlusion.
• Cluttered background objects resembling a human

body.

There are many methods for the automatic detection of
humans in still images, which can be classified into two
main themes based on the types of features and decision clas-
sifiers used for human verification. Table 1 summarizes the
representative categories of human detection algorithms
based on visual features and their classification algorithms.

Many researchers have tried to extract efficient and
accurate features that are suitable for human detection.
Papageorgiou and Poggio2 used Haar wavelets as input
descriptors. This method is invariant to changes in color and
texture and has been used to robustly define a rich and com-
plex class of objects, including people. Viola et al.3 inte-
grated image intensity information with motion using
Haar-like wavelets and applied this method to human move-
ment detection. Lowe4 used scale-invariant feature transform
(SIFT) descriptors to describe local features in images. SIFT

features are local and based on the appearance of an object at
particular points of interest, which means they are invariant
to image scale and rotation. Dalal and Triggs5 used the
locally normalized histograms of oriented gradient (HOG)
descriptors for human detection. A dense overlapping
HOG grid provided good results for human detection, and
it had a lower false positive rate compared with Haar wave-
let-based descriptors. HOG is the most popular feature used
for human detection, but its heavy computation demand is
the one of its drawbacks. Maji et al.6 proposed multilevel
histograms of oriented edge energy and showed that this
method yields better classification performance than the
original HOG. This feature computes the oriented edge
energy responses in eight directions using the magnitude
of the odd elongated oriented filters at a fine scale (σ ¼ 1),
with nonmax suppression performed independently in each
orientation. Chen and Chen7 used a combination of intensity-
based rectangle features and gradient-based features. Local
binary pattern (LBP) descriptors were used as gradient-based
features to detect humans in still images because they are
invariant to monotonic gray level changes, and they
are computationally efficient. This method has been used
widely in various applications, especially facial recognition.
Zhang et al.8 used LBP as a texture feature with color infor-
mation. In this method, the image was divided into M small
nonoverlapping cells before the LBP histograms were
extracted from each cell and concatenated into a single, spa-
tially enhanced feature vector. Wang et al.9 combined HOG
with cell-structured LBP as the feature set. The scanning
windows were divided into nonoverlapping cells measuring
16 × 16. LBPs were extracted from the cells and concat-
enated into a cell-structured LBP.

A common problem with these feature descriptors is their
high-dimensional feature space. For example, the dimension
of HOG is 3780 while LBP is 15,104 per scan window. In
such high-dimensional spaces, classical machine learning
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algorithms such as SVM are almost intractable for training
and testing. Color is also not useful information because
humans wear a variety of clothing colors. Therefore,
Zheng et al.10 used center-symmetric local binary patterns
(CS-LBP) for pedestrian detection to reduce the feature
dimensions. Hu-moments used to identify a pattern of rotated
object and its position in the three-dimensional (3-D)
space.11

Relatively few algorithms have been proposed for human
classification other than feature extraction. Support vector
machines (SVMs) are a representative classifier used for
human detection.1,2,5,6 An SVM classifier is a reasonable
choice for general classification because of its high perfor-
mance and accuracy. However, SVM is not suitable for test-
ing and training when the feature has high dimensionality.
Zhu et al.1 constructed a strong classifier from several
weak classifiers by applying a linear SVM to each level
of the cascade. Viola et al.3 used a cascade of AdaBoost clas-
sifiers to train a chain of progressively more complex region
rejection rules based on Haar wavelet descriptors. This
method can reduce the computation time using an approach
that combines a cascade of rejection rules. Some researchers
have proposed variants of the AdaBoost algorithm. In Ref. 6,
it was shown that an approximation of the histogram inter-
section kernel SVM classifier can be built with the same
human-detection performance but a constant runtime with
a number of support vectors, as opposed to the linear runtime
with a standard approach. Xu et al.12 proposed L1-norm min-
imization learning (LML), which is applied widely in the
field of signal compression to extract compact feature repre-
sentations, and they designed a harmonious linear classifier
for human detection via L1-norm minimization. In Ref. 13, a
cascade of LML classifiers was proposed to provide higher
detection rates by training a series of weak-classifiers using
L1-LML to construct a strong classifier. Yao and Odobez14

used a cascade of LogitBoost classifiers with covariance fea-
tures as human descriptors. The LogitBoost algorithm iter-
atively learns a set of weak classifiers by minimizing the
negative binomial log-likelihood of the training data.

In this study, we extracted more effective and compact
features by extending our initial method15 in several ways
to speed up the computation and improve the detection per-
formance as following ways:

1. We generated additional saliency texture map to boost
texture of human region by comparing the texture con-
trast between the human body and the background.

2. One type of CS-LBP features from the scanning win-
dow of a saliency texture map and two types of CS-
LBP feature from wavelet transformed the subimages
are extracted to capture the human texture and reduce
the feature dimensions.

3. We proved that the wavelet based CS-LBP extracted
from LH subimage is more important feature than
HH subimage and HL subimage because humans
have strong vertical edges along the body boundaries.

4. Three types of random forests (RFs) are built during
the training phase by assembling weak decision trees
to model the distribution of each feature using positive
and negative classes.

5. The three RFs are rearranged as a cascade.
6. During the testing phase, three types of CS-LBP

descriptors are applied to each cascade of RFs. The
cascade of RFs combined with three types of CS-
LBP descriptors acts as a filter chain, which can
increase the detection accuracy by removing negative
windows at each level, and it allows human detection
to be performed in near real-time.

7. A RF using CS-LBP extracted from LH subimage is
located in the second filter, while a RF using CS-LBP
extracted from HH subimage is located in the third fil-
ter without using HL subimage.

The remainder of this paper is organized as follows.
Section 2 describes the feature extraction algorithm for
human detection, i.e., three types of CS-LBP from saliency
texture map and three wavelet subimages. Section 3 introdu-
ces our human verification method using a cascade of RFs.
Section 4 presents an experimental evaluation of the accu-
racy and applicability of our proposed human detection
method. Section 5 presents our conclusions and discusses
the scope for future work.

2 Human Representation Using CS-LBP
Descriptors

In a standing position, the human body can be distinguished
from other objects based on the following characteristics:8

(1) humans have strong vertical edges along the boundaries
of the body; (2) the spatial structure of the human body has
bilateral symmetry; (3) clothing textures are different from
nature textures. Therefore texture is the most pertinent fea-
ture for identifying a human body.

HOG and LBP have been used successfully in many
human detection studies8,9 to improve the detection accuracy.
However, a common problem with these feature descriptors
is their high-dimensional feature space. Therefore, to con-
sider the characteristics of human body and reduce the com-
putation time, we extract the center-symmetric LBP (CS-
LBP), which results in a smaller dimension with a similar
performance to LBP and HOG using a saliency texture
map and wavelet transformed subimages.

2.1 Center-Symmetric LBP

CS-LBP16 uses a modified scheme to compare neighboring
pixels in the original LBP, which simplifies the computation

Table 1 Representative categories of human detection algorithms
based on visual features and their classification algorithms.

Human detection
theme

Methods and related works

Visual features Haar (like) wavelet2,3 scale-invariant feature
transform (SIFT),4 histograms of oriented
gradient (HOG),5 multilevel histograms of
oriented edge energy,6 local binary pattern
(LBP),7,8 HOGþ LBP,9 center-symmetric
(CS)-LBP,10 Hu-moment11

Classification
methods

Support vector machine (SVM) cascade,1

SVMs,2,5 AdaBoost classifiers,3 histogram
intersection kernel SVMs,6 LogitBoost
cascade,10 L1-norm minimization learning
(LML),12 LML cascade (CLML)13
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while maintaining certain characteristics such as tolerance of
illumination changes and robustness against monotonic
gray-level changes.17 CS-LBP differs from LBP because it
compares center-symmetric pairs of pixels with a central
pixel (gc), rather than comparing each pixel with the center,
as shown in Fig. 1.

LBP produces 256 different binary patterns, whereas CS-
LBP only produces 16 (24) different binary patterns.
Furthermore, robustness is maintained in flat image regions
by thresholding the gray-level differences using a small value
T with Eqs. (1) and (2),17 as follows:

sðxÞ ¼
�
1 x > T
0 otherwise

; (1)

CS − LBPR;Nðx; yÞ ¼
XN∕2

i¼0

sðni − niþðN∕2ÞÞ2i; (2)

where ni and niþðN∕2Þ correspond to the gray values of the
center-symmetric pairs of pixels for N equally spaced pixels
in a circle with radius R.

The concept is similar to a gradient operation, because it
calculates the difference between pairs of opposite pixels in a
neighborhood.18

2.2 CS-LBP Feature Extraction Using a Saliency
Texture and Wavelet-Transformed Subimages

Humans tend to have strong vertical edges, wear different
textural clothing, and they have weak or strong gradients
depending on the background intensity, so it is necessary
to boost the human boundary by comparing the textural con-
trast of the inner clothing area with the outer background. To
achieve this, we extract CS-LBP descriptors from a saliency
texture map and wavelet-transformed subimages of the can-
didate human region.

Itti et al.19 proposed a saliency-based visual attention
model and selected the most salient area based on a win-
ner-take-all competition. In Ref. 20, the saliency feature
maps were drawn from the complementary work of Itti
et al.,19 including the downsampling ratio, color model,
and orientation model used for visual search and attention.

However, a human’s identity generally cannot be determined
using color and luminance observation, so texture or geomet-
ric properties are better feature for identifying humans than
color or luminance. Thus we only estimate a saliency texture
map using a simple wavelet transform by modifying the con-
cept proposed in Ref. 20. After a one-level wavelet trans-
form, a saliency texture map Tðc; sÞ is produced from the
three high-pass subimages (HH, HL, and LH), rather than
a low-pass subimage. Then, only one filter, s, with filter
size 9 × 9 is applied to the 1∕4 down-sampled HH, HL,
and LH subimages, c, to reduce the computational require-
ments. The filter estimates the center-surround difference
between the center point and the surrounding points within
the filter scale s and this difference yields the feature map.
Using Eq. (3), three contrast maps are produced from the
three subimages and one filter.

T̄ ¼ 1

3

� X
c∈fHH;HL;LHg

X
s∈f9×9g

Tðc; sÞ
�
. (3)

These maps are then summed and normalized into a
saliency texture map T̄ without upsampling.

After generating the saliency texture map, a saliency-
based CS-LBP (SCS-LBP) descriptor is estimated using
the following three steps. First, the saliency texture of
half the size of the original scanning window (32 × 64) is
determined. Second, a downsampled scanning window is di-
vided into 4 × 4 nonoverlapping cells and the CS-LBP codes
are calculated using P ¼ 8 for the saliency texture map. We
represent each SCS-LBP descriptor cell in a histogram with
16 bins. Third, an L1-sqrt normalization step is conducted
within each cell. The final SCS-LBP histogram of the
saliency texture map is generated by concatenating the
local histograms of the 16 cells. There are 16 cells, which
means that we generate 16 × 16 ¼ 256 histogram bins in
the saliency texture map. Figure 2 shows examples of
extracting the SCS-LBP descriptor.

As a second feature, we extract a CS-LBP descriptor from
wavelet-transformed subimages of candidate human region.
Wavelet transforms have a good spatial frequency localiza-
tion property and they can preserve the spatial and gradient
information of an image. LBP pattern extraction from the
wavelet domain can also reduce noise because LBP and
CS-LBP are suitable for modeling repetitive textures,
which means they are sensitive to random noise in uniform
image areas.18 Thus several researchers18,19 have tried to
extract LBP and CS-LBP features from the wavelet-trans-
formed domain. Therefore we extract a CS-LBP descriptor
from two wavelet-transformed subimages, rather than LBP
descriptors, which reduces the feature dimension. We
exclude low-pass and HL high-pass filtered subimages,
after one-level Daubechies wavelet decomposition.

In general, human images have a strong edge distribution
in the vertical and diagonal directions, but a relatively weak
edge distribution in the horizontal direction. Thus, the two
high-pass filtered subimages (LH, HH) have important prop-
erties when detecting human regions. We prove that an HL
subimage is not an appropriate property for human detection
in Sec. 4.

The extraction of CS-LBP descriptors from wavelet sub-
images (WCS-LBPs) consist of three steps. First, a wavelet
transform is applied to a 64 × 128 window that contains a

Fig. 1 Example of CS-LBP features for a neighborhood of eight
pixels.
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human. Down sampled high-frequency subimages (i.e., LH)
are divided into 4 × 4 nonoverlapping cells. We calculate the
WCS-LBP codes using P ¼ 8 for each high-frequency sub-
image. We represent each WCS-LBP distribution for one cell
of the subimage on a histogram with 16 bins. An L1-sqrt
normalization step is then conducted within each cell.

The final WCS-LBP histogram for each subimage is gen-
erated by concatenating the local histograms of 16 cells.
There are 16 cells, which means we generate a total of 16 ×
16 ¼ 256 histogram bins for each subimage. Figure 2 shows
the steps for extracting the WCS-LBP descriptors.

3 Three-Level Cascade of Random Forest for
Human Classification

Before extracting the three types of CS-LBPs, square root
gamma correction is applied to the input image to map
the image luminance into a more perceptually uniform
domain, based on the results of Ref. 5. The scanning win-
dows are classified into human and nonhuman classes
using the three types of CS-LBPs and pattern classifiers.
An SVM classifier is a reasonable choice for general classi-
fication because of its high performance and accuracy. Many
human detection algorithms have used SVM classifiers.1,2,5,6

However, SVM is not suitable when the feature has high
dimensionality. A cascade of AdaBoost classifiers3 and var-
iants of the AdaBoost algorithm1,8 have also been used for
human classification. However, despite the great success of
AdaBoost (and its descendant algorithms) in theory and
applications, it is difficult to use AdaBoost to classify a target
class with significant intra-class variation against a large
background class.21

In this study, we modified the original version of RFs pro-
posed by Breiman.22 A RF is a decision tree ensemble clas-
sifier, where each tree is grown using some form of
randomization. RFs have the capacity to process huge
amounts of data at high training speeds.

A RF is a collection of T binary structured trees rather
than a single decision tree.

RF ¼ ½htðx;ΘtÞ�; t ¼ 1; : : : ; T; (4)

where ht is the t’th individual tree and hð·Þ is the tree’s pre-
diction. x represent human and nonhuman window samples,
x ¼ fSng; n ¼ 1; : : : ; Nsamples, where each Sn is a database
sample. Θt are independent identically distributed random
vectors, and each tree casts a unit vote for the most popular
class at input x.

In this study, the two classes of RFs were defined as
human and nonhuman. These classes have corresponding
probability values and their probabilities indicate the likeli-
hood of being human at a particular time. The basic charac-
teristics of the three types of CS-LBPs were different, so we
trained three RFs using each CS-LBP descriptor extracted
from one saliency texture map and two wavelet-transformed
subimages in a cascading manner.

Our proposed three-level cascade of RFs is similar to a
series of AdaBoost classifiers,1 but with the following mod-
ifications to reduce the computation time. We combined a
series of RF classifiers as a filter chain, as shown in
Fig. 3. Each filter is a set of strong classifiers (decision
trees) having a number of n weak classifiers. Since each
node of a decision tree has a respective split function,
we regard split functions as week classifiers. In this study,
we generated a three-level cascade of filters (RFs) CRF1,
CRF2, and CRF3 separately, using the three types of CS-
LBP descriptors.

For each level of the cascade, we train the individual deci-
sion tree until predefined quality requirements were met by
modifying original RF. After training the individual tree,
these trees form a RF and each RF is concatenated to produce
a three-level cascade of RFs sequentially.

During training, 950 training images were randomly
selected (450 positive samples and 500 negative samples)
from the INRIA Person dataset.5 The maximum false posi-
tive rate for an I-level RF was 0.7 in each stage. An I-level
RF cascade for human detection consisted of the following
learning procedures (Algorithm 1).

The important parameters of the RF are the depth of trees
and the number of trees. In this study, we set a maximum tree
depth of 20 and the number of tree sets (weak classifiers) in
each stage was 120, based on the experimental results
of Ref. 18.

Fig. 2 Steps for extracting the three types of CS-LBP descriptors generated from a scan window: (a) a scan window; (b) downsampled saliency
texture map of the LH subimage and HH subimage; (c) feature concatenation of the final WCS-LBP descriptors in the LH subimage. SCS-LBP
descriptors are generated using the same method with WCS-LBP.
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After training three-level RFs, the test candidate win-
dows are applied to the rejection cascade of RFs. In the pro-
posed three-level cascade of RFs, each RF (CRF1, CRF2,
and CRF3) only used its assigned three types of CS-LBP
descriptors for classification. Humans tend to have a strong
gradient contrast compared with the background intensity,
so a RF using the SCS-LBP extracted from the saliency tex-
ture map is located in the first filter. In addition, humans
have strong vertical edges along the body boundaries, so
a RF using the WCS-LBP extracted from LH is located
in the second filter, while a RF using WCS-LBP extracted

from HH is located in the third filter. The order of the RFs is
determined by the performance of each filter, as shown
in Fig. 4.

In the first RF using SCS-LBP, the majority of scanning
windows are discarded according to the passing Eq. (6).
The remaining windows are applied to the second RF
using the WCS-LBP extracted from LH. Low-probability
windows are discarded using the same method. The final
windows that pass through the third RF using the WCS-
LBP extracted from HH are declared as human regions, if
they also satisfy the passing Eq. (6).

Algorithm 1 Training the I-level cascade of a random forest.

Input: F target: the maximum acceptable false positive rate per I-level random forest

T target: the maximum number of trees to grow

Dtarget: the maximum depth of trees to extend

Sn : the number of training sets, including positive and negative samples

Initialize: i ¼ 0, j ¼ 0, k ¼ 0; F i ¼ 1.0

Assign n bootstrap samples and their I-th CS-LBP descriptors to training set Sn

Loop: F i > F target

i ¼ i þ 1

Loop: T i < T target

j ¼ j þ 1

Select n new bootstrap samples from training set Sn

Loop: Di < Dtarget

k ¼ k þ 1

1. Grow an unpruned tree using the n bootstrap samples.

2. Each internal node randomly selects p variables and determines the best split function using only these variables. Using
different p’th variables, the split function f ðvpÞ iteratively splits the training data into left (I l ) and right (Ir ) subsets using
equation. I l ¼ ½p ∈ In jf ðvpÞ < t �; Ir ¼ In \ I l : The threshold t is randomly chosen by the split function f ðvpÞ in the range
t ∈ ½minp f ðvpÞ;maxp f ðvpÞ�.

Loop end

Add the j ’th decision tree (week classifiers) to the RF (strong classifier) Loop end

Evaluate positive and negative using the current N decision trees and compute F i .

If F i > F target

Next, evaluate the current I-level RF for the negatives (i.e., nonhuman images), and add misclassified samples
to the negative samples

Loop end

Output: An I-level RF

Each level has a boosted RF classifier that consists of decision trees.
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The probability distribution of the I’th RF is generated by
the arithmetic averaging of each distribution of all trees
L ¼ ðl1; l2; : : : ; lTÞ, using Eq. (5):

P̃ðci∈fhuman;non-humangÞ¼
1

T

XT
t¼1

Pðci∈fhuman;nonhumangjltÞ. (5)

In Eq. (5), T is the number of trees. Then, according to
Eq. (6), the scanning window is passed to the next RF if the
average probability of a human class (P̃ðci∈fhumangÞ) is
greater than the average probability of a nonhuman class
[P̃ðci∈fnonhumangÞ].

�
Pass if½P̃ðci¼fhumangÞ > P̃ðci¼fnonhumangÞ�
Fail otherwise

(6)

Figure 3 shows that if the scanning window passes
through the three filters, it is declared as a human and
the final probability of the input window (P̃ðciÞ) is
estimated by averaging the three level probabilities
(SCS-LBP:P̃STðcijltÞ, WCS-LBP:P̃LHðcijltÞ, P̃HHðcijltÞ)
using Eq. (7).

P̃ðciÞ ¼
�
1

T

XT
t¼1

P̃STðcijltÞ þ P̃LHðcijltÞ þ P̃HHðcijltÞ
�
∕3

(7)

4 Experimental Results
We performed experiments using the INRIA person dataset,5

which includes a wide variety of human body and back-
ground scenes for training and testing systems. This dataset
was collected as part of INRIA’s research work on detection
of upright people in images and video without particular
camera setting. Many people are bystanders taken from
the backgrounds of these input photos, so ideally there is
no particular bias in their pose. This database provides a
training dataset containing 2418 positive and negative
samples of 64- × -128 pixels, as well as dynamic back-
ground images containing no humans that can be used as
negative exemplars. For testing, we used 1380 human

Fig. 3 Classification process using separate CS-LBPs with a trained cascade of random forests. In this example, the test image was classified into
the human class, and it had an average posterior probability of 0.6.

Fig. 4 FPPW versus MR for the three proposed types of CS-LBPs
with four different features using a one-level random forest and the
INRIA dataset.
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samples of 70- × -134 (a margin of pixels around each side)
pixels and 253 images containing nonhumans of 320-×
-240 pixels.

During testing, we applied three samplings of the one-
level wavelet-transformed image (160 × 120): upsampling
by a ratio of 1.2 from the one-level wavelet resolution to
144- × -192 pixels, downsampling by a ratio of 0.8 from
the one-level wavelet resolution to 96- × -154 pixels, and
downsampling by a ratio of 0.6 from the one-level wavelet
resolution to 72- × -96 pixels. In addition, the shifting step-
size of the scanning window was four pixels, and it was
reduced by three pixels in 0.8 and by two pixels in 0.6
down-sampled images.

To evaluate the experiments for human detection, false
positive per window (FPPW) and false positive per image
(FPPI) methodologies are generally used instead of tradi-
tional confidence level.23 In the FPPW, the detector is evalu-
ated by classifying cropped humans versus nonhumans
crops. In the FPPI, the detector scans the image by a sliding
window approach and evaluate the correspondence between
the detected bounding box and the ground truth.

In this study, we used a FPPW versus a miss rate (MR) as
performance criteria as follows because most researches are
evaluated the performance using FPPWand INRIA dataset is
optimized to evaluate FPPW.

• FPPW versus MR curves, where FPPW was defined as
FalsePos∕ðTrueNegþ FalsePosÞ while MR was
defined as FalseNeg∕ðFalseNegþ TruePosÞ. The main
purpose of the human detection problem is to minimize
the miss rate with a very low false positive rate.
FalsePos is obtained by testing all the windows of
the test data that overlapped by less than 50% with
any ground truth object. By contrast, TruePos was
obtained by testing all windows in the test data that
overlapped by over 50% with any ground truth object.

Experiments to detect humans in the test data were per-
formed using an Intel Core 2 Quad processor PC with a
Windows 7 operating system.

4.1 Performance Evaluation of the Feature Sets

To validate the effectiveness of the three proposed types of
CS-LBP features, we compared the human detection perfor-
mance using five different features with one-level RF clas-
sifiers: HOG,5 LBP,17 CS-LBP,16 CS-LBPs from LH wavelet
subimages (LH-CS-LBP), CS-LBPs from HL wavelet
subimages (HL-CS-LBP), CS-LBPs from HH wavelet sub-
images (HH-CS-LBP), and CS-LBP from a saliency texture
map (SCS-LBP).

Figure 4 shows the results of the FPPW and MR curves.
As shown in Fig. 4, we confirmed that each SCS-LBP, LH-
CS-LBP, and HH-CS-LBP produced similar good detection
performance compared with the original HOG and CS-LBP
(i.e., approximately 0.11, 0.14, and 0.16 with a FPPW of
10−4). LBP had the best detection performance, but the
computation time required for detection was 1.5 times higher
than SCS-LBP because of its high dimensionality. SCS-LBP
produced the second best detection performance of the other
five features with a FPPW of 10−4. This method provided
0.04 lower MR than HOG features, which have been used
in many previous studies.5,9 HL-CS-LBP produced the

worst detection results, showing that HL subimages are
not appropriate properties for human detection.

4.2 Performance Comparison with Related Studies

To evaluate the performance of the proposed algorithm,
HOG with Adaboost (HOGþ Adaboost),1 HOG with
SVM (HOGþ SVM),5 and CS-LBP with SVM (CS-LBPþ
SVM),10 which provide the best performance of existing
algorithms, were compared with the three proposed types
of CS-LBP with a three-level cascade of RFs. The experi-
ments were performed using the same INRIA dataset.
As shown in Fig. 5, we confirmed that our proposed
algorithm produced better human detection performance
than the other three methods. With an FPPW rate of 10−4,
our method achieved a 0.03MR, which was 0.11 lower
than the HOG-SVM method, 0.09% lower than the
CS-LBPþ SVM method, and 0.07 lower than the HOGþ
Adaboost method.

The main reason for the lower MR with our proposed
method compared with related methods was that our algo-
rithm found many potential candidate human regions during
the first cascade using the SCS-LBP feature, while it elim-
inated a large amount of false positives in the last two
cascades using two different wavelet subimages.

In addition, the RF classifier has the capacity to process
huge amounts of data with high training speeds and better
performance than SVM,18 because it is based on decision
trees, so our proposed cascade of RFs also had better perfor-
mance than SVM-based detection methods.

4.3 Performance Evaluation of Computation
Time Requirements

One of the main advantages of our method is a reduction in
the computation time, so we compared the computation time
required for human detection using our proposed method and
three related approached [i.e., HOG with Adaboost
(HOGþ Adaboost)1], HOG with SVM (HOGþ SVM),5

and CS-LBP with SVM (CS-LBPþ SVM).10

The computational complexity was evaluated by applying
the detectors to test data and measuring the average process-
ing time in per image instead of operation number because
false data can be rejected in the first or second level. The
average processing speeds for HOGþ SVM, CS-LBPþ
SVM, HOGþ Adaboost, and our proposed method were
2.52, 0.93, 0.45, and 0.28 s per image, respectively, using

Fig. 5 FPPW versus MR for the proposed detection algorithm with
three different methods using the same INRIA dataset.
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the same system environment. Thus our proposed method
was faster than the other three methods because it could
reject false windows using a cascade method, and it had
low-dimensional SCS-LBP and WCS-LBPs features. In par-
ticular, RFs reduced the computation time for testing regard-
less of any increase in the dimensions of test images.
However, the computation time requirement of the SVM-
based method increased linearly as the dimension of the
test image increased.

Figure 6 shows some human detection results with our
proposed method using the INRIA test set. As shown in
Fig. 6, our proposed method detected humans correctly in
test images containing humans of different sizes and in back-
grounds rich in texture information. However, our method
yielded some false or misdetection (last column) results
when a human was occluded by background objects or
when a background object had a similar structure to humans.

5 Conclusion
In this study, we developed a three-level cascade of RFs
using three types of CS-LBP descriptors to improve

human detection performance, which significantly reduced
the time required for human detection.

To detect human regions, we extracted two types of CS-
LBP descriptors from the scan window of a saliency texture
map and wavelet-transformed subimages (i.e., LH and HH,
but not HL). The two CS-LBP descriptors were then applied
to a corresponding cascade of RFs, which were ensembles of
random decision trees. The experimental results with INRIA
images showed that our algorithm improved the human
detection performance when compared with other feature
descriptors and other classification methods.

In the future, we plan to modify our algorithm to handle
partial occlusion and the articulated deformation of humans
in image and videos. Moreover, we plan to apply our approach
to thermal videos for the nighttime detection of humans.

Acknowledgments
This research was financially supported by the Ministry of
Education, Science Technology (MEST) and National
Research Foundation of Korea (NRF) through the Human
Resource Training Project for Regional Innovation.

Fig. 6 Sample human detection results using INRIA images with the proposed method. The final column shows some false and misidentified
results. Red box represents detected results from one-level wavelet-transformed image, blue box represents detected results from downsampling
by a ratio of 0.8, green box represents detected results from downsampling by a ratio of 0.6, and yellow box represents detected results from
upsampling by a ratio of 1.2.
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