
Neighborhood virtual points discriminant
embedding for synthetic aperture radar
automatic target recognition

Jifang Pei
Yulin Huang
Xian Liu
Jianyu Yang



Neighborhood virtual points discriminant embedding for
synthetic aperture radar automatic target recognition

Jifang Pei
Yulin Huang
Xian Liu
Jianyu Yang
University of Electronic Science and Technology

of China
School of Electronic Engineering
No. 2006, Xiyuan Avenue, West Hi-Tech Zone
Chengdu 611731, Sichuan, China
E-mail: peijfstudy@126.com

Abstract. We propose a new feature extraction method for synthetic aper-
ture radar automatic target recognition based on manifold learning theory.
By introducing the virtual point in every sample’s neighborhood, we estab-
lish the spatial relationships of the neighborhoods. When the samples are
embedded into the feature space, each sample moves toward its neigh-
borhood virtual point, whereas the virtual points with the same class label
get together, and the virtual points from different classes separate from
each other. This can improve the classification and recognition perfor-
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1 Introduction
Feature extraction is one of the key steps of synthetic aper-
ture radar automatic target recognition (SAR ATR), which
can reduce the dimensions of SAR images and extract the
effective discriminating feature.

Generally, feature extraction methods are placed into two
categories: linear and nonlinear. Classical linear methods,
such as principal component analysis (PCA),1 and linear dis-
criminant analysis (LDA),2 are based on the global linear
structure of data. The best recognition rates employing PCA
and LDA are higher than 80%, as shown by experiments
based on the Moving and Stationary Target Acquisition and
Recognition (MSTAR) database.3

With the development of the support vector machine,4

nonlinear feature extraction methods based on kernel tricks,
such as kernel principal component analysis5 (KPCA) and
kernel linear discriminant analysis (KLDA),6 have been
widely applied in SAR ATR. By introducing the kernel
function, those methods can solve the linearly inseparable
problem of sample data to some extent. However, a main
shortcoming of the kernel tricks is that the recognition
performance depends on the selection of kernel settings.

Another novel nonlinear method, manifold learning,7 has
been proposed on the premise that high-dimensional images
lie on or near a low-dimensional manifold embedded in the
high-dimensional space. For the purpose of seeking a low-
dimensional manifold embedded in the high-dimensional
data space, various manifold learning algorithms have been
proposed, such as isometric feature mapping,8 locally linear
embedding9 (LLE), Laplacian eigenmaps (LE),10 locality
preserving projections (LPP),11 neighborhood preserving
embedding (NPE),12 and orthogonal neighborhood preserv-
ing projections (ONPP).13

In Cai et al.,14 the LPP algorithm was introduced into
inverse synthetic aperture radar target recognition, and the
classification results were better than those obtained from

PCA and LDA. However, LPP ignored the class information
of the samples and discarded the target information from
SAR images.15

The main goals of the manifold learning algorithms above
are to preserve localities or similar rankings, and those meth-
ods are more appropriate for retrieval or clustering, rather
than classification. By integrating the neighborhood infor-
mation and class relations of samples, some supervised
manifold learning methods have been proposed, including
local discriminant embedding16 (LDE). Bryant17 demon-
strated the application of signature manifold methods on
SAR images, which has achieved considerable detection and
classification results. In Venkataraman et al.,18 capturing the
inter-class and intra-class variability of target shapes, cou-
pled view and identity manifolds for shape representation
was applied to target tracking and recognition. This method
produced an effective classification performance. Manifold
learning algorithms such as LDE only structure the adjacent
graphs using samples in their neighborhoods; they ignore
the spatial relationships between neighborhoods, which will
restrict the classification performance.

To solve the aforementioned problems, a new feature
extraction method, neighborhood virtual points discriminant
embedding (NVPDE), is proposed. By introducing the vir-
tual point in every sample’s neighborhood, relations between
the samples in the neighborhood taken into account, and the
spatial relationships of the neighborhoods are established.
When embedded into the low-dimensional feature space,
the neighborhood virtual points with the same class label, as
well as every sample and its neighborhood virtual point, get
together, whereas the neighborhood virtual points from
different classes separate from each other. In this way, the
recognition performance can be improved.

This paper is organized as follows. Section 2 details the
proposed algorithm framework: samples gathered in the
neighborhood, neighborhood virtual point discriminant,
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and objective function are detailed in Secs. 2.1 to 2.3, respec-
tively. Section 3 shows experimental results, and Sec. 4
concludes this paper.

2 Neighborhood Virtual Points Discriminant
Embedding

LetM be a manifold embedded in Rn. The training dataset is
fxi ∈ Rn; i ¼ 1; 2; · · · ; Ng ∈ M, and corresponding data
class labels are fyi ∈ ½1; 2; · · · ; c�; i ¼ 1; 2; · · · ; Ng, where
N denotes the amount of training data, and c denotes the
class number of training data. Any subset of data points
that belong to the same class is assumed to lie on a submani-
fold of M. In NVPDE, the virtual points are introduced
into the samples’ within-class neighborhoods, and then an
embedding based on linear projection is constructed:
xi ∈ Rn ↦ zi ¼ VTxi ∈ Rl, ðl ≪ nÞ. Via embedding, each
sample xi in the low-dimensional space moves toward its
neighborhood virtual point pi, while the virtual points
with the same class label get together, and the virtual points
from different classes separate from each other.

2.1 Samples Gathered in Neighborhood

We calculate the within-class neighborhood Nþ
k1
ðxiÞ for each

sample xi and select the neighborhood virtual point fpi ∈
Rn; i ¼ 1; 2; · · · ; Ng from each neighborhood Nþ

k1
ðxiÞ.

Here, Nþ
k1
ðxiÞ indicates the set of the k1 nearest neigh-

bors of the sample xi in the same class, pi¼
Φðxi;xa1 ;xa2 ; · · · ;xak1 Þ, xa1 ;xa2 ; · · · ;xak1 ∈Nþ

k1
ðxiÞ, and Φð·Þ

is the virtual points selecting function. Here, we select the
geometric center of the neighborhood Nþ

k1
ðxiÞ as the neigh-

borhood virtual point: pi ¼ ð1∕k1 þ 1Þðxi þ
Pk1

j¼1 xajÞ,
i ¼ 1; 2; · · · ; N, xaj ∈ Nþ

k1
ðxiÞ. The sample’s within-neigh-

borhood objective function is defined as

JnðVÞ ¼
X
i;j

kzi − cjk2wðnÞ
ij

¼
X
i;j

kVTxi − VTpjk2wðnÞ
ij ; (1)

where WðnÞ ¼ ½wðnÞ
ij � ∈ RN×N is the sample’s within-neigh-

borhood affinity weight matrix, which is defined as

wðnÞ
ij ¼

�
expf−kxi − pjk2g; if xi ∈ Nþ

k1
ðxjÞ or i ¼ j

0; otherwise
;

(2)

cj ¼ VTpj ¼
1

k1 þ 1

�
VTxj þ

Xk1
i¼1

VTxai

�
: (3)

JnðVÞ demonstrates the spatial relationships between the
samples and their respective neighborhood virtual points:
The smaller the value of JnðVÞ, the closer the samples are
to their neighborhood virtual points. The explanation of
the process of samples gathered in neighborhood is shown
in Fig. 1, which shows that each sample will move toward
its neighborhood virtual point.

Referring to Eq. (1), we can infer that

JnðVÞ ¼
X
i;j

kzi − cjk2wðnÞ
ij

¼
X
i;j

kVTxi − VTpjk2wðnÞ
ij

¼ trace

�X
i;j

VTðxi − pjÞwðnÞ
ij ðxi − pjÞTV

�

¼ trace

�
VT

�X
i;j

ðxiwðnÞ
ij xTi − xiw

ðnÞ
ij pTj − pjw

ðnÞ
ij xTi

þ pjw
ðnÞ
ij pTj Þ

�
V
�

¼ trace½VTðXWðnÞXT − XWðnÞPT − PWðnÞXT

þ PWðnÞPTÞV�; (4)

where X ¼ ½x1; x2; · · · ; xN � ∈ Rn×N , WðnÞ ¼ ½wðnÞ
ij � ∈ RN×N ,

and P ¼ ½p1; p2; · · · ; pN � ∈ Rn×N . Let H ¼ ½hji� ∈ RN×N ,
where

hji ¼
� 1

k1þ1
; if xj ∈ Nþ

k1
ðxiÞ or i ¼ j

0; otherwise
;

and P ¼ XH. Thus,

JnðVÞ ¼ trace½VTðXWðnÞXT − XWðnÞHTXT − XHWðnÞXT

þ XHWðnÞHTXTÞV�
¼ trace½VTXðWðnÞ −WðnÞHT − HWðnÞ

þHWðnÞHTÞXTV�: (5)

Let LðnÞ ¼ WðnÞ −WðnÞHT −HWðnÞ þHWðnÞHT . Thus,

JnðVÞ ¼ traceðVTXLðnÞXTVÞ: (6)

Fig. 1 Samples’ direction in their within-class neighborhoods for
NVPDE.
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2.2 Neighborhood Virtual Point Discriminant

Because each neighborhood virtual point pi is a linear
combination of the samples in the neighborhood Nþ

k1
ðxiÞ

and xi, the neighborhood virtual points are essentially high-
dimensional image data, as well. Therefore, they should lie
on or near the low-dimensional manifold M embedded in
the high-dimensional space. According to the samples’
class labels, the class labels corresponding to the neighbor-
hood virtual points fpi ∈ Rn; i ¼ 1; 2; · · · ; Ng are fyi ∈
½1; 2; · · · ; c�; i ¼ 1; 2; · · · ; Ng. Any subset of neighborhood
virtual points that belong to the same class is assumed to lie
on a submanifold of M. The within-class neighborhood
virtual point objective function is defined as

JwðVÞ ¼
1

2

X
i;j

kci − cjk2wðwÞ
ij

¼ 1

2

X
i;j

kVTpi − VTpjk2wðwÞ
ij ; (7)

where WðwÞ ¼ ½wðwÞ
ij � ∈ RN×N is the neighborhood virtual

point affinity weight matrix, which is defined as

wðwÞ
ij ¼

�
expf−kpi − pjk2g; if pi ∈ Nþ

k2
ðpjÞ

0; otherwise
; (8)

where Nþ
k2
ðpjÞ indicates the set of the k2 nearest neighbors of

the neighborhood virtual point pj in the same class.
JwðVÞ demonstrates the spatial relationships between the

neighborhood virtual points in the same class: The smaller
the value of JwðVÞ, the closer the neighborhood virtual
points are to each other. The explanation of the process of
neighborhood virtual point discriminant in the same class
is shown in Fig. 2, which shows that the virtual points in
the same class will get together.

The between-class neighborhood virtual point objective
function is defined as

JbðVÞ ¼
1

2

X
i;j

kci − cjk2wðbÞ
ij

¼ 1

2

X
i;j

kVTpi − VTpjk2wðbÞ
ij ; (9)

where WðbÞ ¼ ½wðbÞ
ij � ∈ RN×N is the neighborhood virtual

point penalty weight matrix, which is defined as

wðbÞ
ij ¼

�
expf−kpi − pjk2g; if pi ∈ N−

k3
ðpjÞ

0; otherwise
; (10)

where N−
k3
ðpjÞ indicates the set of the k3 nearest neighbors of

the neighborhood virtual point pj from different classes.
JbðVÞ demonstrates the spatial relationships between the

neighborhood virtual points from different classes: The
larger the value of JbðVÞ, the further the neighborhood vir-
tual points are from each other. The explanation of the proc-
ess of neighborhood virtual point discriminant from different
classes is shown in Fig. 3, which shows that the virtual points
from different classes will separate from each other.

Referring to Eq. (7), we can infer that

JwðVÞ ¼
1

2

X
i;j

kci − cjk2wðwÞ
ij

¼ 1

2

X
i;j

kVTpi − VTpjk2wðwÞ
ij

¼ 1

2
trace

�X
i;j

VTðpi − pjÞwðwÞ
ij ðpi − pjÞTV

�

¼ trace

�
VT

�X
i;j

ðpiwðwÞ
ij pTi − piw

ðwÞ
ij pTj Þ

�
V
�

¼ trace½VTPðDðwÞ −WðwÞÞPTV�; (11)

where P ¼ ½p1; p2; · · · ; pN � ∈ Rn×N ,WðwÞ ¼ ½wðwÞ
ij � ∈ RN×N ,

DðwÞ ¼ diagðdðwÞ11 ; d
ðwÞ
22 ; · · · ; d

ðwÞ
NNÞ, and dðwÞii ¼ P

jw
ðwÞ
ij . Let

H ¼ ½hji� ∈ RN×N , where

Fig. 2 Virtual points’ direction in their within-class neighborhoods
for NVPDE.

Fig. 3 Virtual points’ direction in their between-class neighborhoods
for NVPDE.
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hji ¼
� 1

k1þ1
; if xj ∈ Nþ

k1
ðxiÞ or i ¼ j

0; otherwise
;

and P ¼ XH. Thus,

JwðVÞ ¼ trace½VTXHðDðwÞ −WðwÞÞHTXTV�
¼ traceðVTXLðwÞXTVÞ; (12)

where LðwÞ ¼ HðDðwÞ −WðwÞÞHT .
Referring to Eq. (9), we can infer that

JbðVÞ ¼
1

2

X
i;j

kci − cjk2wðbÞ
ij

¼ 1

2

X
i;j

kVTpi − VTpjk2wðbÞ
ij

¼ 1

2
trace

�X
i;j

VTðpi − pjÞwðbÞ
ij ðpi − pjÞTV

�

¼ trace

�
VT

�X
i;j

ðpiwðbÞ
ij pTi − piw

ðbÞ
ij pTj Þ

�
V
�

¼ trace½VTPðDðbÞ −WðbÞÞPTV�; (13)

where P ¼ ½p1; p2; · · · ; pN � ∈ Rn×N , WðbÞ ¼ ½wðbÞ
ij � ∈ RN×N ,

DðbÞ ¼ diagðdðbÞ11 ; d
ðbÞ
22 ; · · · ; d

ðbÞ
NNÞ, and dðbÞii ¼ P

jw
ðbÞ
ij . Let

H ¼ ½hji� ∈ RN×N , where

hji ¼
�

1
k1þ1

; if xj ∈ Nþ
k1
ðxiÞ or i ¼ j

0; otherwise
;

and P ¼ XH. Thus,

JbðVÞ ¼ trace½VTXHðDðbÞ −WðbÞÞHTXTV�
¼ traceðVTXLðbÞXTVÞ; (14)

where LðbÞ ¼ HðDðbÞ −WðbÞÞHT .

2.3 Objective Function

For the purpose of classification, we expect that JnðVÞ and
JwðVÞ have small values, while JbðVÞ has a large value, so
that each sample in the low-dimensional space will move
toward its neighborhood virtual point, while the virtual
points in the same class get together, and the virtual points
from different classes separate from each other. Therefore,
the samples in the same class will get close, whereas the
samples of different classes will separate from each other
in low-dimensional space.

Let J 0
wðVÞ ¼ JnðVÞ þ JwðVÞ. Referring to Eqs. (6) and

(12), we can infer that

J 0
wðVÞ ¼ traceðVTXLðnÞXTVÞ þ traceðVTXLðwÞXTVÞ

¼ trace½VTXðLðnÞ þ LðwÞÞXTV�
¼ traceðVTXLðwÞ 0XTVÞ: (15)

Consequently, according to Eqs. (14) and (15) and
Fisher’s criterion,19 the objective function of NVPDE can
be formulated as

V� ¼ argmax trace
V

�
VTXLðbÞXTV

VTXLðwÞ 0XTV

�
: (16)

The columns of the optimal V are the generalized eigen-
vectors corresponding to the l largest eigenvalues in

XLðbÞXTv ¼ λXLðwÞ 0XTv: (17)

The NVPDE algorithm procedures are formally stated as
follows:

1. Compute the weight matrices WðnÞ, WðwÞ, and WðbÞ
according to Eqs. (2), (8), and (10).

2. According to Eqs. (14) and (15), compute the matrices
LðbÞ and LðwÞ 0, and then solve the optimal embedding
V according to Eq. (17).

3. Feature extraction: Given a testing sample xt, the
extracted feature based on NVPDE is zt ¼ VTxt,
where zt ∈ Rl.

Concerning the computational complexity of the pro-
posed algorithm, we note that the complexity of searching
k nearest neighbors for all the samples and neighborhood
virtual points is OðnN2Þ. The complexity of calculating
the elements of weight matrices is OðnNÞ. The complexity
of computing the matrices LðbÞ and LðwÞ 0 is OðN3Þ, and the
complexity of solving the generalized eigenvalue decompo-
sition problem is Oðn3Þ. In most cases, the number of train-
ing samples is less than the dimension of the training sample
ðN < nÞ. Therefore, like most other feature extraction meth-
ods, the computational bottleneck of NVPDE is solving the
generalized eigenvalue problem, whose computational
complexity is Oðn3Þ.

3 Experimental Results
In this section, the MSTAR20 and AT&T face databases are
utilized to evaluate the proposed algorithm.

The MSTAR dataset consists of X-band original SAR
images (128 × 128 pixels) with a resolution of one foot by
one foot. The target images are three types of military
vehicles. Each object includes images covering the full
aspect range of 0 deg to 360 deg. In this work, the training
dataset contains SAR images at a depression angle of 17 deg,
and the testing dataset contains images at a depression angle
of 15 deg. Table 1 lists the type and number of each object.

We mainly make use of the targets in the MSTAR SAR
images to evaluate the performance of the proposed algo-
rithm. The original SAR image dataset has been prepro-
cessed21 to extract the target areas of SAR images before
feature extraction. The steps of SAR image preprocessing
are as follows:

1. Two-parameter CFAR22 and geometric clustering are
conducted to target segmentation. Then the binary
mask matrices of the images are obtained.

2. The targets of SAR images are extracted by masking
the binary matrices to the corresponding original SAR
images. The location of the target is recentered on the
centroid through centering image registration.23

3. Energy normalization preprocessing is used to normal-
ize the energy of images in the same range. The gray
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enhancement based on power function24 is executed to
enhance the information of the SAR images.

The optical images and the corresponding SAR images of
the three targets in the MSTAR dataset are shown in Figs. 4
and 5. In Fig. 6, it is shown that the binary mask matrices of
the targets are obtained after two-parameter CFAR and geo-
metric clustering conducted in the SAR images. Figure 7
indicates that the target areas of SAR images are extracted,
and the image registration centered on the centroid is oper-
ated. The gray enhancement and energy normalization pre-
processing are executed as shown in Fig. 8.

The AT&T face database25 contains images from 40 indi-
viduals, each providing 10 different images. For some sub-
jects, the images were taken at different times, varying the
lighting, facial expressions, and facial details. All images
are grayscale. For each individual, four images are randomly
selected for training, and the rest are used for testing. Thus,
we get 160 training samples and 240 testing samples for this
experiment.

The experiment includes four parts. The theoretical
approach of the proposed algorithm will be validated
using the SAR image dataset in part 1. In part 2, we compare
our algorithm with five other methods (PCA, LDA, KPCA,
KLDA, and LDE) to evaluate the recognition performance
for SAR images. We also illustrate the classification results
by a two-dimensional data visualization to evaluate the per-
formance of NVPDE. In part 3, we evaluate and discuss the
influences of the relevant neighbor parameters variation for
the proposed algorithm in SAR ATR. The recognition results
for the face image database are demonstrated in part 4.

3.1 Part 1

3.1.1 Experimental steps

Because of the local Euclidean principle in manifold,9 sam-
ples and virtual points have a nearly linear distribution in the
neighborhoods. Therefore, we utilize the scatter26 to measure
the spatial relationships among the data points in their neigh-
borhoods statistically.

1. We employ the SAR image training dataset as the
experiment samples in part 1. We calculate the neigh-
borhood virtual point fpi ∈ Rn; i ¼ 1; 2; · · · ; Ng from

Table 1 The training and testing samples in experiments.

Training set Size Testing set Size

BMP2sn_c21 233 BMP2sn_9563 195

BMP2sn_9566 196

BMP2sn_c21 196

BTR70sn_c71 233 BTR70sn_c71 196

T72sn_132 232 T72sn_132 196

T72sn_812 195

T72sn_s7 191

Total 698 Total 1365

Fig. 4 Optical images for (a) T72, (b) BTR70, and (a) BMP2 in the MSTAR database.

Fig. 5 Corresponding SAR images of three targets.
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each neighborhood Nþ
k1
ðxiÞ and compute the

neighborhood scatters ξ ¼ ½ξ1; ξ2; · · · ; ξN � ∈ R1×N in
each Nþ

k1
ðxiÞ to measure the spatial relation-

ships between the samples and their respective
neighborhood virtual points statistically, where
ξi ¼ 1

k1þ1

P
xj∈Nþ

k1
ðxiÞ or i¼jðxj − piÞTðxj − piÞ, i ¼

1; 2; · · · ; N, and N ¼ 698.
2. We find the embedding V ∈ Rn×n by the NVPDE

algorithm. We compute the neighborhood scatters
ξ 0 ¼ ½ξ 0

1; ξ
0
2; · · · ; ξ

0
N � ∈ R1×N to measure the spatial

relationships between the embedded samples and
their respective embedded neighborhood virtual
points, where ξ 0

i ¼ 1
k1þ1

P
xj∈Nþ

k1
ðxiÞ or i¼jðVTxj−

VTpiÞTðVTxj − VTpiÞ, i ¼ 1; 2; · · · ; N. We then
calculate Δξ ¼ ξ − ξ 0 ¼ ½Δξ1;Δξ2; · · · ;ΔξN � ∈ R1×N

to measure the neighborhood scatter variations within

each sample’s neighborhood. According to the vector
Δξ and the class information, the neighborhood scatter
variation stem plot of three class targets is shown
in Fig. 9.

3. We follow the same routine, calculating the scatter
variations Δψ ¼ ψ − ψ 0 ¼ ½Δψ1;Δψ2; · · · ;ΔψN � ∈
R1×N for each virtual point’s within-class neighbor-
hood, where Δψ i ¼ ψ i − ψ 0

i , and the virtual point’s
within-class neighborhood scatter before embedding
ψ i ¼ 1

k2

P
pj∈Nþ

k2
ðpiÞðpj − piÞTðpj − piÞ and the virtual

point’s within-class neighborhood scatter after embed-
ding ψ 0

i¼ 1
k2

P
pj∈Nþ

k2
ðpiÞðVTpj−VTpiÞTðVTpj−VTpiÞ,

i ¼ 1; 2; · · · ; N. According to the vector Δψ i and the
class information, the virtual points’ within-class
neighborhood scatter variation stem plot of three
class targets is shown in Fig. 10.

Fig. 6 Corresponding binary mask matrices of three targets.

Fig. 7 Target areas of corresponding SAR images.

Fig. 8 Preprocessed SAR images of three targets.
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4. We calculate the scatter variations Δη ¼
η − η 0 ¼ ½Δη1;Δη2; · · · ;ΔηN � ∈ R1×N for each virtual
point’s between-class neighborhood, where Δηi ¼
ηi − η 0

i , and the virtual point’s between-class
neighborhood scatter before embedding ηi ¼
1
k3

P
pj∈N−

k3
ðpiÞðpj − piÞTðpj − piÞ and the virtual

point’s between-class neighborhood scatter after
embedding η 0

i ¼ 1
k3

P
pj∈N−

k3
ðpiÞðVTpj − VTpiÞTðVTpj−

VTpiÞ, i ¼ 1; 2; · · · ; N. According to the vector Δηi
and the class information, the virtual points’

between-class neighborhood scatter variation stem
plot of three class targets is shown in Fig. 11.

3.1.2 Experimental results and discussions

We make some statistics according to the elements of Δξ,
Δψ , and Δη. The proportion corresponding to the condition
Δξi > 0 is 71.06%. The proportion corresponding to the
condition Δψ i > 0 is 61.32%, and the proportion corre-
sponding to the condition Δηi < 0 is 55.59%.

50 100 150 200
−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a)

∆ζ
i

250 300 350 400 450
−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b)

∆ζ
i

500 550 600 650
−0.1

−0.05

0

0.05

0.1

0.15

0.2

(c)

∆ζ
i

Fig. 9 Samples’ within-neighborhood scatter variations after being embedded.
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Fig. 10 Virtual points’ within-class neighborhood scatter variations after being embedded.
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Fig. 11 Virtual points’ between-class neighborhood scatter variations after being embedded.
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According to Figs. 9 and 10 and the statistical results, it
can be seen that most of the samples’ within-neighborhood
scatter variations and the virtual points’ within-class neigh-
borhood scatter variations are positive. This indicates that the
samples move toward their neighborhood virtual points, and
the virtual points in the same class get together by the embed-
ding of the proposed method.

From Fig. 11 and the statistical results, it can be seen
that more than half of the virtual points’ between-class
neighborhood scatter variations are negative. This demon-
strates that the NVPDE algorithm can keep the virtual points
from different classes far away from each other in the low-
dimensional space effectively.

3.2 Part 2

3.2.1 Experimental steps

In this experiment, PCA, LDA, KPCA, KLDA, LDE, and
NVPDE are utilized to extract features of the experimental
SAR image dataset. The value of neighbor parameters are
k1 ¼ 10 and k2 ¼ 20 in LDE and k1 ¼ 18, k2 ¼ 20, and
k3 ¼ 85 in NVPDE. The nearest neighbor classifier27 (NNC)
is utilized for the final classification.

The kernel function of KPCA and KLDA is the Gaussian
kernel kðxi; xjÞ ¼ expð−kxi − xjk2∕σÞ. As mentioned
above, the recognition performance of the kernel method
depends on the kernel settings, and the selection of the kernel
settings is empirical in practice.

We change the kernel parameter gradually and get the cor-
responding top recognition rates. Then we evaluate the best
kernel parameter.

Figure 12 shows that plots of top recognition rate versus
the different values of kernel parameters using KPCA and
KLDA. From this, we can see that the kernel parameters σ ¼
9 for KPCA and σ ¼ 6 for KLDA are the best selections.

3.2.2 Experimental results and discussions

Figure 13 shows plots of recognition rate versus dimensions
of the feature vectors by PCA, LDA, KPCA, KLDA, LDE,
and NVPDE. The maximal feature dimension based on LDA
is less than the number of class c.28 Therefore, the recogni-
tion rate of LDA is the performance with two feature
dimensions.

From Fig. 13, we can see that PCA and LDA have rela-
tively low recognition rates. For the high-dimensional SAR
image dataset, the manifold structure corresponds more to
spatial distribution. However, the classical linear feature
extraction methods, such as PCA and LDA, are all based
on the global linear structure of a dataset. This limits the
recognition performance of those two methods.

Figure 13 demonstrates that the recognition rates of
KPCA and KLDA are similar but are significantly improved
over PCA and LDA. LDE performs better than KPCA and
KLDA. The NVPDE algorithm performs far better than the
other methods.

The linearly inseparable problem can be transformed into
a linearly separable one in a higher-dimensional space by
kernel tricks, so that the linearly inseparable problem can
be solved by KPCA and KLDA to some extent. However,
the recognition performance depends on the selection of ker-
nel functions, which is the main drawback of kernel tricks.

Based on manifold learning theory, LDE incorporates
the class relations of samples, which can discover the
low-dimensional essential structure from a high-dimensional
SAR image dataset. However, this method is based only on
establishing relations between samples; it ignores the spatial
relationships between neighborhoods, which will restrict the
recognition performance.

By introducing the neighborhood virtual point into every
sample’s neighborhood in the NVPDE algorithm, the rela-
tions between the samples and their neighborhood virtual
point are taken into account, and the spatial relationships
of the neighborhood virtual points are established, by
which the relations between neighborhoods are formed indi-
rectly. Therefore, the algorithm is able to find out more dis-
criminating information from the neighborhoods, and the
recognition performance is far superior to LDE.

In order to evaluate the classification performance of the
proposed feature extraction method systematically, we inves-
tigate the ROC of the proposed method,29 and two typical
feature extraction methods (PCA and LDE) were conducted
for a comparison. Figure 14 shows the ROC of three feature
extraction methods using NNC, and the false alarm proba-
bility axis is logarithmic.

From Fig. 14, it can be seen that:
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Fig. 12 Top recognition rate versus the different kernel parameters
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1. LDE and the NVPDE algorithm have a relatively high
correct classification probability ðPccÞ and a relatively
low false alarm probability ðPfaÞ. Therefore, these two
methods have considerable classification results.

2. NVPDE can achieve a higher correct classification
probability and a lower false alarm probability than
the other two methods.

3. The area under the ROC curve of the NVPDE algo-
rithm is larger than that of PCA and LDE. This
shows that the proposed algorithm has a better recog-
nition performance than the other methods.

The top recognition rate and the corresponding dimen-
sions by various algorithms are shown in Table 2, and we
can see that our proposed algorithm outperforms the other
methods.

The training samples of the SAR images are embedded
into two-dimensional Euclidean space by NVPDE, LDE,
and PCA to illustrate the classification results with a 2-D
data visualization example.

Figure 15 shows the distributions of three class samples
after being embedded in two-dimensional Euclidean space
by NVPDE, LDE, and PCA. The plus symbol represents
the first-class samples in the embedding space, while the
o represents the second-class samples, and the asterisk rep-
resents the third-class samples.

The experimental results show that samples in the same
class do not get evidently close in the embedding space by
PCA. After being embedded by LDE, the samples with the
same class label get close to some extent, but most samples
from different classes overlap with each other, which will
restrict the recognition rate. By introducing the neighbor-
hood virtual point in NVPDE, the relationships between
neighborhoods are established indirectly, and more discrimi-
nating information can be found out. Hence the samples with
the same class label get close, and samples from different
classes separate from each other in the embedding space,
as shown in Fig. 15.

3.3 Part 3

3.3.1 Experimental steps

In this part, LDE and NVPDE will be utilized to extract fea-
tures of the experimental dataset with various neighbor
parameter values. The aim is to evaluate the stability of
the proposed algorithm. We set k1 ¼ 10 and k2 ¼ 20 in LDE
and k1 ¼ 18, k2 ¼ 20, and k3 ¼ 85 in NVPDE as the bench-
mark parameter settings. We then change one of the neighbor
parameters gradually while keeping other parameters con-
stant, and we record the corresponding top recognition
rates of the two feature extraction methods.
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Fig. 14 ROC comparison of the different feature extraction methods.

Table 2 Best recognition performance by various algorithms.

Method Top recognition (%) Feature dimension

PCA 92.23 140

LDA 85.79 2

KPCA 93.70 170

KLDA 93.92 80

LDE 95.10 90

NVPDE 97.88 80
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Fig. 15 Distributions of three class samples after being embedded in two-dimensional Euclidean space by (a) NVPDE, (b) LDE, and (c) PCA.
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3.3.2 Experimental results and discussions

Figures 16 and 17 show the plots of top recognition rates
versus the different values of neighbor parameters using
LDE and NVPDE. From these figures, we can see that:

1. The variation of the within-class neighboring param-
eter k1 has a tiny effect on the recognition perfor-
mance in LDE, while the between-class neighboring
parameter k2 impacts the recognition performance
significantly.

2. The selections of k1 and k2 influence the recognition
results of NVPDE slightly, and k3 has an effect on the
recognition performance to some extent, but it is much
smaller than k2 in LDE.

Because the curvature and density may vary over the
manifold,30 as an open problem,31 the values of neighbor
parameters are likely to influence the result of recognition
as in LDE.

In the NVPDE algorithm, the neighborhood virtual point
of each sample is computed. In this way, the mean of each
neighborhood is calculated, which is able to smooth the neigh-
borhood of each sample and weaken the influence of neighbor
parameters on recognition performance. Therefore, the selec-
tion of neighbor parameters has a very small effect on the clas-
sification results of our proposed method.

3.4 Part 4

3.4.1 Experimental steps

In this part, we take advantage of the AT&T face database to
examine the applicability of the proposed method in optical

image recognition. LDE and NVPDE are utilized to extract
features of the experimental AT&T dataset. The values of the
neighbor parameters are k1 ¼ 3 and k2 ¼ 30 in LDE and
k1 ¼ 3, k2 ¼ 3, and k3 ¼ 30 in NVPDE. NNC is used for
the final classification.

3.4.2 Experimental results and discussions

Figure 18 shows plots of recognition rates versus the dimen-
sions of the feature vectors by LDE and NVPDE. In Fig. 18,
the best recognition rate is 90.42% with the corresponding
feature dimension 70 for LDE, while the top recognition
rate can get to 93.75% with the corresponding feature dimen-
sion 60 in NVPDE. This means that the recognition perfor-
mance of the proposed method outperforms LDE for the
AT&T face database. Therefore, the experimental results indi-
cate that the NVPDE method can achieve a satisfactory rec-
ognition performance in optical image recognition, as well.

4 Conclusion
For the issue of feature extraction from high-dimensional
SAR images, it is important to establish relationships
between samples’ neighborhoods, which will uncover
much more discriminating information. In this paper, a new
approach to feature extraction was proposed, in which the
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neighborhood virtual points are employed and the rela-
tionships between neighborhoods are taken into account
sufficiently. Through this method, classification is better
conducted in feature space, and the recognition performance
is improved. The experimental results based on the MSTAR
dataset demonstrate the effectiveness of our method.

Acknowledgments
This research was supported by the National Natural Science
Foundation of China (No. 61201272).

References

1. M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit.
Neurosci. 3(1), 71–86 (1991).

2. P. N. Belhumeur et al., “Eigenfaces vs. Fisherfaces: recognition using
class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell.
19(7), 711–720 (1997).

3. A. K. Mishra, “Validation of PCA and LDA for SAR ATR,” in
TENCON 2008—2008 IEEE Region 10 Conf., pp. 1–6, IEEE,
Hyderabad, India (2008).

4. Q. Zhao and J. C. Principe, “Support vector machines for SAR auto-
matic target recognition,” IEEE Trans. Aerosp. Electron. Syst.
37(2), 643–654 (2001).

5. B. Scholkopf et al., “Kernel principal component analysis,” in Advances
in Kernel Methods-Support Vector Learning, B. Schölkopf et al., Eds.,
pp. 327–352, MIT Press, Cambridge, Massachusetts (1999).

6. S. Mika et al., “Fisher discriminant analysis with kernels,” in Proc. 1999
IEEE Signal Processing Society Workshop, pp. 41–48, IEEE, Madison
(1999).

7. H. S. Seung et al., “The manifold ways of perception,” Science
290(5500), 2268–2269 (2000).

8. J. B. Tenenbaum et al., “A global geometric framework for non-
linear dimensionality reduction,” Science 290(5500), 2319–2323
(2000).

9. S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science 290(5500), 2323–2326 (2000).

10. M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Proc. Adv. Neural Inform. Process.
Syst., Vol. 14, pp. 585–592, MIT Press, Massachusetts (2002).

11. X. He and P. Niyogi, “Locality preserving projections,” in Proc. 16th
Conf. Neural Information Processing Systems, p. 103, MIT Press,
Vancouver, Canada (2003).

12. X. He et al., “Neighborhood preserving embedding,” in Proc. 11th
International Conf. Computer Vision, Vol. 2, pp. 1208–1213, MIT
Press, Beijing, China (2005).

13. E. Kokiopoulou and Y. Saad, “Orthogonal neighborhood preserving
projections: A projection-based dimensionality reduction technique,”
IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2143–2156 (2007).

14. H. Cai et al., “ISAR target recognition based on manifold learning,” in
Proc. IET International Radar Conf., pp. 1–4, IET, Guillin, China
(2009).

15. B. Wang et al., “A feature extraction method for synthetic aperture radar
(SAR) automatic target recognition based on maximum interclass
distance,” Sci. China Tech. Sci. 54(9), 2520–2524 (2011).

16. H. T. Chen et al., “Local discriminant embedding and its variants,” in
IEEE Computer Society Conf. Computer Vision and Pattern
Recognition, Vol. 2, pp. 846–853, IEEE, San Diego (2005).

17. M. Bryant, “Target signature manifold methods applied to MSTAR
dataset: preliminary results,” Proc. SPIE 4382, 389–394 (2001).

18. V. Venkataraman et al., “Automated target tracking and recognition
using coupled view and identity manifolds for shape representation,”
EURASIP J. Adv. Sig. Proc. 2011(1), 1–17 (2011).

19. R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Human Gen. 7(2), 179–188 (1936).

20. T. Ross et al., “Standard SAR ATR evaluation experiments using the
MSTAR public release dataset,” Proc. SPIE 3370, 566–573 (1998).

21. T. Wang, “SAR automatic target recognition method research based on
manifold learning,”Wanfang Data, 1 May 2010, http://d.g.wanfangdata
.com.cn/Thesis_Y1707370.aspx.

22. L. M. Novak et al., “Performance of a high-resolution polarimetric SAR
automatic target recognition system,” Lincoln Lab. J. 6(1), 11–24
(1993).

23. T. Wang et al., “SAR ATR based on generalized principal component
analysis integrating class information,” in Proc. IET International
Radar Conf., pp. 1–4, IET, Guillin, China (2009).

24. R. C. Gonzalez and R. E. Woods, Digital Image Processing, pp. 80–84,
Prentice Hall, New Jersey (2008).

25. AT&T Laboratories Cambridge, “The AT&T Database of Faces,” http://
www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (2002).

26. S. Theodoridis and K. Koutroumbas, Pattern Recognition, pp. 280–299,
Elsevier Inc., Amsterdam, Holland (2011).

27. T. Cover, “Estimation by the nearest neighbor rule,” IEEE Trans.
Inform. Theory 14(1), 50–55 (1968).

28. A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans.
Pattern Anal. Mach. Intell. 23(2), 228–233 (2001).

29. A. K. Mishra et al., “Automatic target recognition,” in Encyclopedia of
Aerospace Engineering, R. Blockley and W. Shyy, Eds., John Wiley &
Sons Ltd., Hoboken, New Jersey (2010).

30. N. Mekuz and J. Tsotsos, “Parameterless ISOMAP with adaptive neigh-
borhood selection,” Chapter 37 in Pattern Recognition, pp. 364–373,
Springer, Berlin, Heidelberg (2006).

31. Y. Shuicheng et al., “Graph embedding and extensions: A general
framework for dimensionality reduction,” IEEE Trans. Pattern Anal.
Mach. Intell. 29(1), 40–51 (2007).

Jifang Pei received a BS from the College of
Information Engineering at Xiangtan Univer-
sity, Hunan, China, in 2010. He is an IEEE
student member and is working toward an
MSc degree at the University of Electronic
Science and Technology of China (UESTC),
Chengdu. His research interests include
SAR automatic target recognition and digital
image processing.

Yulin Huang received his BS and PhD
degrees in electronic engineering from the
University of Electronic Science and Tech-
nology of China, Chengdu, in 2002 and
2008, respectively. He is an IEEE member
and an associate professor at UESTC. His
fields of interest include radar signal process-
ing and SAR automatic target recognition.

Xian Liu received a BS degree from the Insti-
tute of Information Science and Engineering
at Hebei University of Science and Technol-
ogy, China, in 2009. She is an IEEE student
member and is working toward a PhD degree
at UESTC. Her fields of interest include SAR
automatic target recognition.

Jianyu Yang received a BS degree from the
National University of Defense Technology,
Changsha, China, in 1984, and MS and
PhD degrees from UESTC in 1987 and
1991, respectively. All his degrees are in
electronic engineering. He is a professor at
UESTC and a senior editor for the Chinese
Journal of Radio Science. He is a member
of IEEE and the Institution of Engineering
and Technology and a senior member of
the Chinese Institute of Electronics.

Optical Engineering 036201-11 March 2013/Vol. 52(3)

Pei et al.: Neighborhood virtual points discriminant embedding for synthetic. . .

http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.1109/34.598228
http://dx.doi.org/10.1109/7.937475
http://dx.doi.org/10.1126/science.290.5500.2268
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1109/TPAMI.2007.1131
http://dx.doi.org/10.1007/s11431-011-4430-0
http://dx.doi.org/10.1117/12.438232
http://dx.doi.org/10.1186/1687-6180-2011-124
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1117/12.321859
http://d.g.wanfangdata.com.cn/Thesis_Y1707370.aspx
http://d.g.wanfangdata.com.cn/Thesis_Y1707370.aspx
http://d.g.wanfangdata.com.cn/Thesis_Y1707370.aspx
http://d.g.wanfangdata.com.cn/Thesis_Y1707370.aspx
http://d.g.wanfangdata.com.cn/Thesis_Y1707370.aspx
http://d.g.wanfangdata.com.cn/Thesis_Y1707370.aspx
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://dx.doi.org/10.1109/TIT.1968.1054098
http://dx.doi.org/10.1109/TIT.1968.1054098
http://dx.doi.org/10.1109/34.908974
http://dx.doi.org/10.1109/34.908974
http://dx.doi.org/10.1109/TPAMI.2007.250598
http://dx.doi.org/10.1109/TPAMI.2007.250598

