
Open-source graphics processing unit–
accelerated ray tracer for optical
simulation

Florian Mauch
Marc Gronle
Wolfram Lyda
Wolfgang Osten



Open-source graphics processing unit–accelerated ray
tracer for optical simulation

Florian Mauch
Marc Gronle
Wolfram Lyda
Wolfgang Osten
University Stuttgart
Institut fürTechnische Optik
Stuttgart Research Centre of Photonic

Engineering
Pfaffenwaldring 9, 70569 Stuttgart, Germany
E-mail: mauch@ito.uni-stuttgart.de

Abstract. Ray tracing still is the workhorse in optical design and simula-
tion. Its basic principle, propagating light as a set of mutually independent
rays, implies a linear dependency of the computational effort and the num-
ber of rays involved in the problem. At the same time, the mutual independ-
ence of the light rays bears a huge potential for parallelization of the
computational load. This potential has recently been recognized in the
visualization community, where graphics processing unit (GPU)-acceler-
ated ray tracing is used to render photorealistic images. However, preci-
sion requirements in optical simulation are substantially higher than in
visualization, and therefore performance results known from visualization
cannot be expected to transfer to optical simulation one-to-one. In this
contribution, we present an open-source implementation of a GPU-accel-
erated ray tracer, based on nVidias acceleration engine OptiX, that traces
in double precision and exploits the massively parallel architecture of
modern graphics cards. We compare its performance to a CPU-based
tracer that has been developed in parallel. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.OE.52.5.053004]

Subject terms: ray tracing; graphics processing unit-accelerated computing; optical
simulation.

Paper 130271 received Feb. 19, 2013; revised manuscript received Apr. 8, 2013;
accepted for publication Apr. 18, 2013; published online May 9, 2013.

1 Introduction
Ray tracing has been the most important tool to optical
designers ever since Ernst Abbe and Carl Zeiss started to sys-
tematically design optical microscopes. It is ultimately based
on the Eikonal equation as a short-wavelength approxima-
tion to the scalar Helmholtz equation.1 In piecewise homo-
geneous media, it results in a repetitive calculation of
intersections of lines (i.e., rays) with the surfaces separating
the volumes of homogeneous refractive index (i.e., the opti-
cal elements) as well as evaluation of Snell’s law. Even
though these calculations initially were done manually,
soon enough computer programs were developed that
sped up the process substantially.2 Today a vast number
of highly developed software packages for ray tracing are
commercially available (see Ref. 3, for example, for a recent
and certainly incomplete listing). Despite the dramatic
increase in computer performance over recent years, ray trac-
ing remains a time-consuming task for optical designers and
engineers. Especially, stray light analysis of complex optical
systems as well as design and evaluation of illumination sys-
tems rely on Monte Carlo techniques, whose signal-to-noise
ratio is inversely proportional to the square root of the num-
ber of rays reaching the detector. These applications are still
limited by computation speed, even on today’s machines.4

Furthermore, innovative applications of ray tracing in current
research topics often use a huge number of rays (e.g., Refs. 5
and 6). Such applications typically need additional data, e.g.,
optical pathlengths or local wavefront curvatures, to be car-
ried by the rays. Such extensions to the classic ray tracing
procedure demand access to the basic algorithms of the trac-
ing engine, which is usually not available for commercial

software. Therefore, these applications are often realized
with custom-built tracing engines written in script languages
(e.g., Refs. 5 and 7), which generally do not perform well for
iterative procedures such as ray tracing.

At the same time, ray tracing attracted a lot of attention in
the visualization community, where it is used to render
photorealistic images for video games and special effects
in movies. It was mainly this community that realized the
prospects of massively parallel computing architectures of
modern graphics processing units (GPU) for accelerating
ray tracing.8 It is presumably thanks to the marketing pros-
pects in this area that nVidia introduced a ray-tracing appli-
cation acceleration engine called OptiX9 at SIGGRAPH
2009 in New Orleans. It provides an intuitive C-style access
to the parallel computing architecture of nVidia’s latest
graphics cards, which is specifically designed to enable
quick development of ray-tracing applications. It is therefore
the intent of this contribution to present an openly accessible,
GPU-accelerated ray-tracing software based on OptiX that is
dedicated to optical simulation and design, and to compare
its performance to CPU ray tracing.

2 GPU-Accelerated Ray Tracer
While a central processing unit (CPU) is optimized for fast
execution of wildly branching programs, a GPU is especially
designed for so-called data parallel computations, i.e., prob-
lems in which the same instructions are executed on many
data elements. Therefore, in a GPU, many arithmetic logic
units (ALU) are grouped together in a single instruction,
multiple data (SIMD) architecture. All of these ALUs per-
form the same operation as decoded by the shared control
logic on its locally loaded data elements simultaneously,

Optical Engineering 053004-1 May 2013/Vol. 52(5)

Optical Engineering 52(5), 053004 (May 2013)

http://dx.doi.org/10.1117/1.OE.52.5.053004
http://dx.doi.org/10.1117/1.OE.52.5.053004
http://dx.doi.org/10.1117/1.OE.52.5.053004
http://dx.doi.org/10.1117/1.OE.52.5.053004
http://dx.doi.org/10.1117/1.OE.52.5.053004
http://dx.doi.org/10.1117/1.OE.52.5.053004


i.e., in parallel. Details about GPU architectures and the
implications on general purpose programming can be
found in Ref. 10, for example. For the actual application
of ray tracing, it has been pointed out that its basic principle,
i.e., propagating a set of mutually independent rays through
an optical scene, fits perfectly with this kind of parallel
architecture.8

One problem of GPU computing is that the performance
of algorithms strongly depends on the actual hardware at
hand. Therefore, programmers have to break down the com-
putation task into smaller parts that can be efficiently distrib-
uted among the computational units available on the GPU at
hand. To have a chance of automatic performance scaling
among different models of current GPUs as well as with
upcoming GPU hardware, we chose to use the OptiX accel-
eration engine of nVidia to implement our ray tracer. OptiX
is not a ray tracer itself, providing no algorithms for calcu-
lations of intersections or similar things at all. Instead, it is a
simple abstract model of a ray tracer, providing a framework
for building a ray-tracing application and relieving the pro-
grammer from dealing with the details of the actual hard-
ware. In fact OptiX roughly defines a ray tracer via a set
of three functions:11 (1) a so-called ray-generation function
serves as an entry point into the ray tracing application and
generates rays, starts the actual tracing, and processes the
rays after the trace; (2) the intersection function calculates
the distance of a given ray to a given surface; and (3) the
hit function encapsulates the interaction of a ray with a sur-
face that is hit, i.e., roughly the functionality of a material in
classic optical-design ray tracers. For example, the hit func-
tion of a surface enclosing a simple refracting material will
calculate Snell’s law and change the direction of an incoming
ray accordingly.

OptiX merely defines these functions in its abstract
model. The actual implementation has to be provided
entirely by the developer in compliance with CUDA-C,10

i.e., nVidia’s extension to the C-standard. Additionally,
OptiX defines a hierarchy to organize the functions repre-
senting the scene that is to be simulated and, most impor-
tantly, a data structure representing the ray that is to be
traced through the scene. As OptiX has been designed for
the visualization community, the variables defining the origin
and the direction of these rays are 32-bit single-precision
floating-point variables. This precision is commonly not

sufficient for scientific optical simulations, especially if
wavefront properties are to be modeled. Fortunately OptiX
also offers the possibility to attach a user-defined data
structure to each ray. Therefore, we use this structure to
pass around 64-bit double-precision floating-point variables
defining the origin and direction of the ray. This way, we can
trace the rays with an accuracy adequate for optical simula-
tion and stay within the OptiX framework. To be able to
compare the principle performance of the GPU acceleration
as objectively as possible, we defined the algorithms of the
intersect and hit functions, i.e., the main workload of the
tracing, as ANSI-C-style inline functions. This way, we can
compile exactly the same algorithms into the GPU code and
a CPU code that was developed in parallel.

The sources of the ray tracer are released under a GPL
license.12 Even though the code should be platform indepen-
dent in principle, we did develop it in Microsoft Visual
Studio 2010 for 64-bit Microsoft Windows. The software
can be used as a stand-alone command line program or in
conjunction with a graphical user interface (GUI). In the lat-
ter case, the tracer is statically linked to a plugin for another
software package of our institute, called “itom.”13 The source
code of the GUI plugin as well as a Windows installer of the
base program are also provided at Ref. 12.

3 Performance Results
Ray tracing is a method routinely applied to a broad range of
problems. In an attempt to create an overview of the appli-
cability of GPU-accelerated computing for optical-simu-
lation ray tracing in general, we chose three different
optical systems that are meant to cover the most typical
applications of ray tracing in optical simulation. All com-
putations presented in this contribution were done on a
Windows 7 system that uses 20 GB of DDR3 RAM and runs
on an Intel i7 980 CPU at 3.33 GHz. A nVidia GeForce
GTX580 graphics board was used to do the GPU-accelerated
computations and for the system viewport simultaneously.
The measurement of the computation times presented in
Figs. 1 and 2 was done with standard timing routines inside
the code and includes transmission of all data of all rays to
the GPU and back. No postprocessing of the rays, e.g., cal-
culation of irradiance distributions, is included in the time
measurements, and the tracing times of the CPU were all
recorded utilizing a single thread.

Fig. 1 Comparison of computation times depending on the number of traced rays. Blue curves show the computation times using GPU accel-
eration, and red lines show the results of the conventional CPU mode for the simple sequential system (a), the complex sequential system (b), and
the nonsequential stray light system (c).

Optical Engineering 053004-2 May 2013/Vol. 52(5)

Mauch et al.: Open-source graphics processing unit–accelerated ray tracer for optical simulation



The first test system represents the class of applications
that deals with the sequential analysis of comparably simple
optical systems. In this case, we chose the double-Gauss
objective example that is distributed as a sample system
with copies of the commercial ray-tracing software Zemax
(see Fig. 3).

Figure 1(a) shows the computation times depending on
the number of rays that are traced through the system for
the GPU-accelerated tracer and the CPU-based tracer in
double logarithmic scale. The computation time of the CPU-
based code shows the expected, nearly perfect linear depend-
ence to the number of rays. The curve representing the
computation time for the GPU-accelerated code shows two
different regimes. For low numbers of rays, the computation
time is independent of the actual number of rays and substan-
tially higher than the computation time of the CPU code. In
this regime, the computation time is dominated by the time

that is needed to transfer data to the GPU and back. For high
ray numbers, the curve approaches a linear form that is
roughly parallel to the curve of the CPU code, indicating
that the GPU is fully occupied by the calculations and issu-
ing more computation commands to the GPU results in
sequential execution. For the optical system of Fig. 3, the
GPU code starts to be faster than the CPU code at a ray num-
ber of roughly 100,000. According to the timing data that is
summarized in Tables 1 and 2, the performance advantage of
the GPU code saturates at a factor of 25 for ray numbers
>100 million.

The second test system is depicted in Fig. 4 and was
chosen to represent the class of complex sequential applica-
tions. It comprises a lithography objective according to a US
patent.14 It consists of 38 spherical lenses, i.e., 76 surfaces,
for a sequential analysis that ignores the side faces of the
lenses.

An examination of the computation times for this optical
system as depicted in Fig. 2(b) reveals the same principle of
behavior as for the simple sequential system; however, the
GPU code starts to be faster than the CPU code for 20,000
rays compared to 100,000 rays for the simple sequential sys-
tem. Additionally, the acceleration factor approaching ray
numbers >100 million reaches a value of approximately 45.

Figure 5 depicts a spectrometer system that represents the
class of nonsequential stray light applications. It comprises
16 surfaces, including a diffraction grating with complex
reflectance functions, that is highlighted in green in Fig. 5.
It was investigated in detail in an earlier publication4 that
described the first application of an early version of the
GPU-accelerated ray tracer presented here.

Fig. 2 (a) speedup of the GPU implementation depending on number of rays and number of intersections per ray. The benchmark system was
equipped with an nVidia Tesla C2070 GPU and Intel i7 3.2 GHz CPU. (b) Computation times depending on uniformity of ray paths allowing 1000
intersections.

Fig. 3 Rendered view of the double-Gauss objective used to re-
present simple sequential applications. This picture is directly
exported from our ray-tracing program.

Table 1 Computation times of CPU-based tracing in seconds.

100 rays 1000 rays 10,000 rays 100,000 rays 1 million rays 10 million rays 100 million rays

Double-Gauss objective 0001 0003 0033 0327 3,203 31,240 313,125

Lithography objective 0003 0022 0222 2193 21,383 212,739 2,127,471

Spectrometer system 0004 0034 0194 1621 15,431 154,310 1,540,818

Optical Engineering 053004-3 May 2013/Vol. 52(5)

Mauch et al.: Open-source graphics processing unit–accelerated ray tracer for optical simulation



An examination of the computation times for this nonse-
quential optical systems again shows the typical behavior
already observed for the other systems. As for the complex
sequential system, GPU code starts to be faster for 20,000
rays and traces rays approximately 50 times faster than a
CPU for ray numbers >100 million.

4 Systematization of Performance Results
The performance results of Sec. 3 show that GPU-acceler-
ated ray tracing provides a significant speedup compared
to conventional CPU-based tracing. However, the actual
speedup depends strongly on both the number of rays
involved in the simulation and the complexity of the optical
system. For ray numbers below a certain threshold,

performance of the GPU-accelerated code drops below the
performance of the CPU code. Additionally, the advantage
of the GPU acceleration increases when the optical system
consists of more surfaces. To systematize the results of these
application-oriented test systems, we present a more generic
system that might help to illustrate the effects that affect the
performance of the GPU-accelerated code. Figure 6 shows a
schematic view of this test scene.It consists of a set of four
plane surfaces. The outer two plane surfaces are made per-
fectly reflecting, whereas the inner two surfaces confine an
area filled with a refracting material whose refracting index
equals the background refracting index. To control the num-
ber of circulations in this resonator, an extra variable count-
ing the number of intersections that a ray encounters has
been added to each ray. The scene is traced nonsequentially,
and each ray encounters six intersections during one circu-
lation. Snell’s law has to be evaluated four times upon refrac-
tion at the two inner surfaces, and reflection has to be
calculated two times. By restricting the numbers of intersec-
tions for each ray to a low number, we mimic a simple scene,
and by increasing the number of allowed intersections, we
increase the complexity of the scene. Figure 2(a) compares
the computation times of the GPU and CPU implementations
depending on the number of rays that are traced.

As the transfer of data to the GPU and back is included, it
can be seen that the CPU implementation is faster for low
numbers of rays, resulting in a quotient of the CPU time
and the GPU time being close to zero. Furthermore, it can
be seen that the speedup of the GPU implementation can
reach values up to 100 for complex simulations involving
more than a thousand intersections of more than 10 million
rays.

Table 2 Computation times of GPU-based tracing in seconds.

100 rays 1000 rays 10,000 rays 100,000 rays 1 million rays 10 million rays 100 million rays

Double-Gauss objective 0367 0338 0359 0347 0465 1925 12,450

Lithography objective 0436 0444 0451 0482 0882 5404 47,179

Spectrometer system 0372 0349 0355 0374 0611 3703 30,767

Fig. 4 Rendered view of lithography objective adapted from Ref. 12,
used to represent complex sequential applications. This picture is
directly exported from our ray-tracing program.

Fig. 5 Rendered view of spectrometer system that was investigated
in detail in Ref. 4, used to represent nonsequential stray light analysis.
This picture is directly exported from our ray-tracing program.

Fig. 6 Schematic view of the generic test scene proposed for bench-
marking GPU ray tracing against CPU ray tracing.

Optical Engineering 053004-4 May 2013/Vol. 52(5)

Mauch et al.: Open-source graphics processing unit–accelerated ray tracer for optical simulation



Figure 2(b) illustrates another interesting effect. Making
the inner two surfaces reflecting 50% of the rays causes the
rays to propagate along different paths through the resonator
of Fig. 6. The blue lines indicating the computation time of
the CPU implementation are not distinguishable. However,
running this simulation on a GPU shows that computation
time of the semi-reflecting scene approximately doubles.
This effect is due to the SIMD architecture of the GPU
cores. As the rays propagate along different paths through
the scene, it gets harder to load rays to the cores that are proc-
essed using the same instructions, and the so-called thread
coherence10 is violated. Differing instructions are in fact
processed sequentially on the GPU, thereby increasing com-
putation time.10

5 Conclusions
The results of the application-oriented examples of Sec. 3
show that the performance of the GPU-accelerated ray
tracing strongly depends on the actual problem at hand.
Therefore Sec. 4 presents a generic test system that attempts
to systematize this application dependency. It is apparent that
the GPU acceleration becomes more effective, the more rays
are traced in the simulation and the more complex the optical
system is. Acceleration factors of up to 100 compared to the
CPU-based code can be observed in Fig. 2. In general, non-
sequential ray tracing increases the computational load
per ray, and therefore GPU acceleration becomes significant
for lower ray numbers compared with sequential simulations.
However, as rays may travel along a large number of
different paths through a complex scene in nonsequential
simulations, thread-coherence issues start to impact GPU
performance. By giving full access to the source code of
this software to the open-source community, we hope that

this high-speed ray-tracing software will prove helpful
for the development of new innovative ray tracing-based
applications.

Acknowledgments
The financial support of the Bundesministerium für Bildung
und Foschung (BMBF) under the Grant 13N10386 is grate-
fully acknowledged.

References

1. M. Born and E. Wolf, Principles of Optics, 7th Ed., Cambridge
University Press, Cambridge, United Kingdom (2006).

2. D. P. Feder, “Optical calculations with automatic computing machi-
nery,” J. Opt. Soc. Am. 41(9), 630–635 (1951).

3. The Scott Partnership, “Optical simulation software,” Nat. Photon. 4(4),
256–257 (2010).

4. F. Mauch et al., “Combining rigorous diffraction calculation and GPU
accelerated nonsequential raytracing for high precision simulation of a
linear grating spectrometer,” Proc. SPIE 8083, 80830F (2011).

5. F. Riechert et al., “Ray-based simulation of the propagation of light with
different degrees of coherence through complex optical systems,” Appl.
Opt. 48(8), 1527–1534 (2009).

6. M. A. Alonso and G. W. Forbes, “Stable aggregates of flexible elements
give a stronger link between rays and waves,” Opt. Express 10(16),
728–739 (2002).

7. J. C. Halimeh et al., “Photorealistic images of carpet cloaks,” Opt.
Express 17(22), 19328–19336 (2009).

8. T. J. Purcell et al., “Ray tracing on programmable graphics hardware,”
ACM Trans. Graph. 21(3), 703–712 (2003).

9. nVidia, http://www.nvidia.com/object/optix.html (accessed 23 July
2012).

10. D. B. Kirk and W. W. Hwu, Programming Massively Parallel
Processors, Elsevier, New York (2010).

11. nVidia Corp., “OptiX Programming Guide,” version 2.5 (2008).
12. See http://bitbucket.org/itom/macrosim for current source code.
13. The source code of itom will be realeased under LGPL at https://

bitbucket.org/itom/itom.
14. K.-H. Schuster, “Projection Objective,” US Patent 6522484B1 (2003).

Biographies and photographs of the authors not available.

Optical Engineering 053004-5 May 2013/Vol. 52(5)

Mauch et al.: Open-source graphics processing unit–accelerated ray tracer for optical simulation

http://dx.doi.org/10.1364/JOSA.41.000630
http://dx.doi.org/10.1038/nphoton.2010.73
http://dx.doi.org/10.1117/12.889175
http://dx.doi.org/10.1364/AO.48.001527
http://dx.doi.org/10.1364/AO.48.001527
http://dx.doi.org/10.1364/OE.10.000728
http://dx.doi.org/10.1364/OE.17.019328
http://dx.doi.org/10.1364/OE.17.019328
http://dx.doi.org/10.1145/566654.566640
http://www.nvidia.com/object/optix.html
http://www.nvidia.com/object/optix.html
http://www.nvidia.com/object/optix.html
http://www.nvidia.com/object/optix.html
http://bitbucket.org/itom/macrosim
http://bitbucket.org/itom/macrosim
https://bitbucket.org/itom/itom
https://bitbucket.org/itom/itom
https://bitbucket.org/itom/itom

