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Abstract. An identification of human eye retinas by applying the covari-
ance function and wavelet theory is presented. The estimations of the
autocovariance functions of the two digital images or single image are cal-
culated according to random functions, based on the vectors created from
the digital image pixels. The estimations of the pixel’s vectors are calcu-
lated by spreading the pixel arrays of the digital images into single column.
During the changing of the scale of the digital image, the wave frequencies
of the colors of the single pixels are prekept, and the influence of the
change of a scale in the procedures of the calculations of the covariance
functions does not occur. The Red, Green, Blue (RGB) color model of the
colors spectrum for the encoding of the digital images was applied.
The influence of the RGB spectrum components and the tensor of colors
on the estimations of the covariance functions were analyzed. The identity
of the digital images is estimated by analysis of the changes of the corre-
lation coefficient values in the corresponding diapason. © The Authors.
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1 Introduction
A number of papers are contributing to retinal imaging and
image analysis.1,2 Retinal researchers and practicians make
more and more wide use of the digital images, which causes
the need to improve the image processing algorithms. In this
paper we stress on an identification of the digital images by
applying the photogrammetric methods and random func-
tions theory. The spatial positions of the digital image pixels
are defined by the spatial region of the frequencies of color
waves, i.e., by radiometric level, applying the Red, Green,
Blue (RGB) coding format of the colors spectrum. The theo-
retical model is based on the stationary random function tak-
ing into account that the errors of the color wave frequencies
are random and that they are of the same accuracy, i.e., a
mean of errors is MΔ ¼ const ¼ 0 and their dispersion is
DΔ ¼ const, and that the covariance function of the digital
images depends only on the difference of the arguments, i.e.,
on the pixel quantize interval. The estimations of the covari-
ance function of the two digital images or the autocovariance
function of the single image are calculated according to ran-
dom functions, based on the vectors, created from the digital
image pixels. The Fourier transformation3,4 or wavelet
theory5–8 is used for processing the digital signals. The
main goal of this article is to provide the opportunity for
a continuous improvement of the core algorithms, driven
by performance of the covariance analysis approach. Such
algorithms could be used in various areas of research and
practice, including public and clinical health, biomedicine,
security systems, etc.

2 Covariance Model of the Light Frequencies
Spectrum

Let us analyze the autocovariance and covariance theoretical
models of the white light spectrum, which is combination of

the colors of different frequencies. The various color systems
[RGB, hue, saturation and value (HSV), luma information,
in-phase, quadrature (YIQ), hue, lightness and saturation
(HLS), etc.] are used to define the digital images. The
RGB system is used widely. The image of this system
can be easily redone to the image of the other color systems,
in which one of the component will be light signal and the
other components define the color. It is used in the visuali-
zation, because we know that the human eye retina is more
sensitive to the changes of the light strength than to the
changes of the color itself.

Let us apply a linear expression of the harmonic oscilla-
tions equation to describe the light frequencies spectrum:

aðtÞ ¼ A sinðφþ φ0Þ

¼ Aðsin φ̄þ δφ cos φ̄ −
1

2
δ2φ sin φ̄þ : : : Þ; (1)

where A is an amplitude of the frequencies, φ ¼ ωt is a
phase, φ0 is an initial phase, ω ¼ 2πf is a cycle frequency,
f is a frequency, t is a time moment, Mφ ¼ φ̄ is a mean of a
phase, δφ ¼ φ − φ̄ is the random error of a phase.

In real world and in practice, the monochromatic (single
fixed-frequency) oscillations do not exist. So, analyzing a
single color from the RGB color system, we understand
that it is a mix of single color frequencies in the very narrow
interval of frequencies Δω.

We will use the first-order members of Eq. (1) in the cal-
culations of the covariance expressions, because an influence
of the higher-order members is negligible. The dispersion
Dai and, certainly, covariance Kðai; aiÞ of the monochro-
matic oscillations of frequency ωi has expression
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Dai ¼ Kðai; aiÞ ¼ Mðai −MaiÞ2 ¼ MðA2
i δ

2φi cos
2 φ̄iÞ

¼ A2
i cos

2 φ̄iσ
2φi; ð2Þ

whereMai ¼ sin φ̄i,Mφi ¼ φ̄i is the symbol of a mean, σφi

is the standard deviation.
The coefficient of correlation of the same frequency is

equal to

rðai; aiÞ ¼
Kðai; aiÞ
σai · σai

¼ 1: (3)

The covariance of the two fixed different frequencies
looks like

Kðai;ajÞ¼Mðδai · δajÞ¼MðAi ·Ajδφi

×δφj cos φ̄i · cos φ̄jÞ
¼AiAj cos φ̄i · cos φ̄jMðδφi · δφjÞ¼ 0;

(4)

where δai ¼ ai −Mai, Mðδφi · δφjÞ ¼ Mδφi · Mδφj ¼ 0,
because Mδφi ¼ 0 is a mean of the independent random
errors.

The coefficient of correlation of the two fixed different-
frequency oscillations, applying Eq. (4), is equal to

rðai; ajÞ ¼
Kðai; ajÞ
σai · σaj

¼ 0: (5)

Because in nature and in practice the fixed-frequency
oscillations do not exist, so for the analysis of the covariance
of the light spectrum colors, we will use the signal compo-
sitions, applying their interference. The main summing equa-
tion of the interference of two frequencies aij could be
written as follows:9

aij ¼ ai þ aj þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ai · aj

p
γ cos Δφij; (6)

where γ is a coefficient of the frequency coherence and
Δφij ¼ φi − φj is the difference of the oscillation phases.
In further calculations we will adopt Ai ¼ 1 and γ ¼ 1,
because the influence of the permanent multipliers do not
come into play during determination of the correlation
coefficients.

So we have such a linear expression of a sum of two dif-
ferent frequency interferences.

aij ¼ sin φ̄iþ sin φ̄jþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ̄i · sin φ̄j

q
cosΔφ̄ij

þcos φ̄iδφiþ cos φ̄jδφjþðsin φ̄i · sin φ̄jÞ−1∕2 cosΔφ̄
×ðsin φ̄j cos φ̄iδφiþ sin φ̄i cos φ̄jδφjÞ
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ̄i · sin φ̄j

q
ð−sinΔφ̄ijδφiþ sinΔφ̄ijδφjÞ;

(7)

where Maij¼ sin φ̄iþ sin φ̄jþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ̄i · sin φ̄j

p
· γ · cosΔφ̄ij.

An expression of the random error of the oscillations sum-
ming interference will be

δaij ¼ cos φ̄iδφiþ cos φ̄jδφjþðsin φ̄i · sin φ̄jÞ−1∕2 cos Δφ̄ij

×ðsin φ̄j cos φiδφiþ sin φ̄i cos φ̄jδφjÞ
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ̄i · sin φ̄j

q
ð− sin Δφ̄ijδφiþ sin Δφ̄ijδφjÞ:

(8)

We can ignore the last member of Eq. (8), because
its influence is not big and its value
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ̄i · sin φ̄j

p ð− sin Δφ̄ijδφi þ sin Δφ̄ijδφjÞ → 0,
when δφi ≈ δφj.

The covariance expression of the oscillations summing
interference could be written as follows:

Kðaij; aikÞ ¼ Mðδaij · δaikÞ ¼ cos2 φ̄iσ
2
φi

þ ðsin φ̄i · sin φ̄jÞ−1∕2 cos Δφ̄ij · sin φ̄j cos
2 φ̄iσ

2
φi

þ ðsin φ̄i · sin φ̄kÞ−1∕2 sin φ̄k cos Δφ̄ik cos
2 φ̄iσ

2
φi

þ sin−1 φ̄iðsin φ̄j · sin φ̄kÞ−1∕2 cos Δφ̄ij cos Δφ̄ik

× sin φ̄j sin φ̄k cos
2 φiσ

2
φi
;

(9)

where Mδφi ¼ 0, Mðδφi · δφjÞ ¼ Mðδφi · δφkÞ
¼ Mðδφj · δφkÞ ¼ 0 because of the independent random
errors multiplication product.

Further, Eq. (9) has the following expression:

Kðaij; aikÞ ¼ ½1þ ðsin φ̄i · sin φ̄jÞ−1∕2 sin φj cos Δφ̄ij�
× ½1þ ðsin φ̄i · sin φ̄kÞ−1∕2 sin φk cos Δφ̄ik�cos2 φ̄iσ

2
φi
:

(10)

By using the similar calculations, we could write the for-
mulae of the dispersion of the oscillations summing interfer-
ence:

Daij¼σ2aij ¼½1þðsin φ̄i · sin φ̄jÞ−1∕2 sin φ̄j cosΔφ̄ij�2
×cos2 φ̄iσ

2
φi
þ½1þðsin φ̄i · sin φ̄jÞ−1∕2 sin φ̄i cosΔφ̄ij�2

×cos2 φ̄jσ
2
φj
: (11)

The formulae of the correlation coefficient of the two
oscillations summing interference:

rðaij; aikÞ ¼
Kðaij; aikÞ
σaij · σaik

: (12)

In further calculations we will adopt σφi
¼ σφj¼ σφk

¼ σφ.
The accuracy of the phase measurements of the white

light colors is equable, i.e., the standard deviations of the
oscillation phases of the discrete frequencies are equal,
σφi

¼ : : : ¼ σφk
¼ σφ. It comes from the assumption that

the distributions of the random errors of the spectrum com-
ponents are asymptotically similar.

Equations (3), (5), and (12) show that correlation between
oscillations of different frequencies does not exist, whereas it
exists between oscillations of similar frequencies. The cor-
relation between the compound oscillations of mixed
frequencies exists in the case when these oscillations have
the components of similar frequencies.
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3 Model of the Covariance Functions
of the Digital Images

To develop the theoretical model we will apply the presump-
tion that the errors of the digital image pixel parameters are
random. The random function is constructed by spreading
the arrow of the digital image pixels according to columns
into one-dimensional space along the same coordinate axis.
In each column of the pixel arrays the trend of the corre-
sponding column is eliminated. The parameters are the
indexes of the pixel color intensities in the RGB format
color spectrum. We will accept the random function con-
structed in such a way as a stationary function (in wide
understanding), i.e., its mean M½φðtÞ� → const and a covari-
ance function depend on the argument difference only,
KφðτÞ. The pixel arrows of the two segments of the single
digital image or segments of the two images hlðuÞ ir
hjðuþ τÞ, accepted as the realizations of the random func-
tions, continuous covariance function KhðτÞ could be written
as follows:10,11

KhðτÞ ¼
1

T − τ

Z
T−τ

0

δhlðuÞδhjðuþ τÞdu; (13)

where δhlðuÞ, δhjðuþ τÞ is the centered pixel parameters
segments, u is a parameter of the segment pixel, T is the
length of the segment in conventional units, τ ¼ k · Δ is a
changeable quantise interval, Δ is a value of the pixel param-
eter, k is the number of pixels in the quantise interval.

The covariance function K 0
hðτÞ based on the measure-

ment results could be estimated according to the following
formulae:

K 0
hðτÞ ¼ K 0

hðkÞ ¼
1

n − k

Xn−k
i¼1

δhlðuiÞδhjðuiþkÞ; (14)

where n is the total number of discrete intervals.
Equation (14) could be applied in the form of the auto-

covariance and intercovariance function. In the case of the
autocovariance function, the segments hlðuÞ and hjðuþ τÞ
are parts of the single digital image, and in the case of
intercovariance function, these segments are parts of the
two different images.

The estimation of the normalized covariance function is

R 0
hðkÞ ¼

K 0
hðkÞ

K 0
hð0Þ

¼ K 0
hðkÞ
σ 02
h

; (15)

where σ 0
h is an estimation of the standard deviation of the

random function.
To eliminate the trend in the i column of the image pixels

array, we can use the formula

δHi ¼ Hi − e · h̄Ti ¼ ðδhi1; δhi2; : : : ; δhimÞ; (16)

where δHi is an array of reduced pixels of the i digital image,
in which column trend was eliminated; Hi is an array of the
pixels of the i image, e is a unit vector, dimension of which is
(n × 1); n is the number of rows of the i array, h̄i is a vector of
the means of the i pixels array column, δhij is a j column
(vector) of the reduced pixels of the i array.

The vector of the means of the columns of the i pixels
array could be calculated according to

h̄Ti ¼ 1

n
eT · Hi (17)

or

h̄i ¼
1

n
HT

i · e: (18)

The realization of the random function of the i pixels
array of the digital image in the form of vectors has an
expression

δhi ¼

0
BBB@

δhi1
δhi2
: : :
δhim

1
CCCA ¼ ðδhTi1δhTi2: : : δhTimÞT: (19)

An estimation of the autocovariance matrix of the i pixels
array of the digital image looks like

K 0ðδHiÞ ¼
1

n − 1
δHT

i δHi: (20)

An estimation of the covariance matrix of the two digital
images or two pixels arrays of the single digital image could
be written as follows:

K 0ðδHi; δHjÞ ¼
1

n − 1
δHT

i δHj; (21)

where the dimensions of the arrays δHi, δHj should
be equal.

Applying the theory of covariance functions, the influ-
ence of the RGB format color spectrum components on
the expressions of the covariance functions of the digital
images was analyzed. Also, the expressions of the covariance
functions of the digital images were estimated using the
RGB colors continuous spectrum in the sense of the color
tensor.

The estimations of the covariance matrixes K 0ðδHiÞ and
K 0ðδHi; δHjÞ are reduced to the estimations of the correla-
tion coefficient matrixes R 0ðδHiÞ and R 0ðδHi; δHjÞ.10,11

R 0ðδHiÞ ¼ D−1∕2
i K 0ðδHiÞD−1∕2

i ; (22)

R 0ðδHi; δHjÞ ¼ D−1∕2
ij K 0ðδHi; δHjÞD−1∕2

ij ; (23)

whereDi,Dij are the diagonal matrixes of the main diagonal
members of the corresponding covariance matrix estimations
K 0ðδHiÞ and K 0ðδHi; δHjÞ.

4 Results of the Experiment and Analysis
The digital images of the human eye [right oculus dexter
(OD) and left oculus sinister (OS)] retinas were used in
the analysis. The digital images were taken by ordinary
photo camera and coded in JPEG format. Example of the
OD retina’s digital image is presented in Fig. 1. The
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calculations were executed by computer procedures written
in MATLAB.

The results of the calculations are presented in Table 1
and in Figs. 2 through 9. In the calculations of the covariance
functions, the values of quantise interval were changed
from 1 pixel till n∕2 pixels (in our case, n ¼ 120000, aver-
age number of pixels in the segment of a digital image). An
analysis was done applying all RGB color tensors and its
components—red R, green G, and blue B colors.

In Table 1 the summarized mean values of the correlation
coefficients between the pixels arrays of the digital images
of the right OD and left OS eye retinas are shown. The
calculations were executed along the single RGB color
spectrum components and according to RGB spectrum
tensor.

In the calculations of the normalized covariance func-
tions, the results are presented only for red color of RGB
spectrum, because the changes of the results for other spec-
trum colors are negligible.

From the data in Table 1 we can see that the values of the
correlation coefficients between OD and OS retina arrays are
near zero along all RGB spectrum colors, except red color,
where correlation coefficients between OD and OS pixel

columns are rOD ¼ 0.54 and rOS ¼ 0.40. This means that
retinas absorb (accept) all the color oscillations at the
same level, with an exception R color. The values of the cor-
relation coefficients along all the RGB color tensors are near
one and this means there is a very good relation between both
retinas along all the RGB frequencies complex.

The change (−0.3 < r2 < 1.0) of the correlation coeffi-
cients between the five columns of pixel arrays of the digital
image of the OD retina is shown in Fig. 2, the change
(−0.4 < r2 < 1.0) of the correlation coefficients between
the five columns of pixel arrays of the digital image of
the OS retina is shown in Fig. 3, and the change
(−0.7 < r4 < 0.3) of the correlation coefficients between
the five columns of pixel arrays of the digital images of
the OD and OS retinas is presented in Fig. 4.

A normalized autocovariance function of the digital
image of the retina OD is presented in Fig. 5. It describes
a change of the correlation due to changes of the quantise
interval k between pixels. The values of the correlation coef-
ficient are decreasing from r ¼ 1.0 at k ¼ 0 to r < 0, 1 when

Fig. 1 A digital image of an OD retina.

Table 1 The mean values of the correlation coefficients between the
pixels arrays of the digital images.

Combinations of the arrays
of the digital images of the
right OD and left OS eyes

Mean value of the
correlation coefficient

Red R Green G Blue B
RGB
tensor

Between OD pixel columns 0.54 −0.15 −0.17 0.98

Between OS pixel columns 0.40 0.13 −0.11 0.98

Between OD and OS pixel
arrays

−0.42 −0.097 0.11 0.95

Fig. 2 The changes of the correlation coefficients between the five
columns of pixel arrays of the digital image of the OD retina.

Fig. 3 The changes of the correlation coefficients between the five
columns of pixel arrays of the digital image of the OS retina.
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k ¼ 13000. A normalized autocovariance function of the
digital image of the retina OS is presented in Fig. 6. The val-
ues of the correlation coefficient are changing from r ¼ 1.0
at k ¼ 0 to r < 0.1 when k ¼ 10000. Last results show the
decreasing of the correlation coefficient values to r → 0 at a
large value of k ¼ 10000.

A normalized covariance function of the digital images of
the OD and OS retinas is shown in Fig. 7.

The values of covariance function at k ¼ 0 are not big
(−0.25 < r < 0.25); however, when quantise interval is
increasing, the values of covariance function are slightly
increasing too, and when k ¼ 20;000 they are changing in
the interval −0.3 < r < 0.45.

A scatter in percentages of the correlation coefficient
matrix values of the digital images of the OD and OS retinas
is shown in Fig. 8.

The negative correlation occupies about 50% of both
array areas. Graphical view of the spatial matrix of the cor-
relation coefficients of the digital images of the OD and OS
retinas is presented in Fig. 9.

Fig. 6 A normalized autocovariance function of the digital image of
the OS retina.

Fig. 7 A normalized covariance function of the digital images of the
OD and OS retinas.

Fig. 8 The changes in percents of the matrix of the covariance coef-
ficients of OD and OS retinas.

Fig. 5 A normalized autocovariance function of the digital image of
the OD retina.

Fig. 4 The changes of the correlation coefficients between the five
columns of pixel arrays of the digital images of the OD and OS retinas.
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5 Conclusions

1. The mean correlation between the pixel columns of the
arrays of the digital images of the human eye OD and
OS retinas along the single RGB component is not big
or even negative. However, the values of the correla-
tion coefficients between pixel columns of the OD and
OS arrays applying total RGB color tensors are near
one. This means that OD and OS retina correlation is
very strong.

2. A normalized autocovariance function of the digital
image allows us to determine the change of the corre-
lation depending on the pixel quantise interval. The
estimations of the normalized covariance functions
do not differ much when applying the different RGB
spectrum components. The values of a normalized
covariance function of the digital images of the OD
andOS retinas are decreasing very slowly and approach
zero r → 0 at a large value of the quantise interval
k ¼ 10000. This shows a very big correlation between
the pixels, which are close to each other. The values of a
normalized covariance function of the digital images of
the OD and OS retinas are not big (−0.2 < r < 0.45) in
all the quantise intervals. This shows that correlation
between OD and OS retinas is weak.

3. It was detected that negative correlation between the
pixels occupies ∼50% of both OD and OS retina
array areas and that shows the graphical view of the
spatial matrix of the correlation coefficients.
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