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Abstract. Our team has pioneered an explosives detection technique based on hyperspectral imaging of
surfaces. Briefly, differential reflectometry (DR) shines ultraviolet (UV) and blue light on two close-by areas
on a surface (for example, a piece of luggage on a moving conveyer belt). Upon reflection, the light is collected
with a spectrometer combined with a charge coupled device (CCD) camera. A computer processes the data and
produces in turn differential reflection spectra taken from these two adjacent areas on the surface. This differ-
ential technique is highly sensitive and provides spectroscopic data of materials, particularly of explosives. As an
example, 2,4,6-trinitrotoluene displays strong and distinct features in differential reflectograms near 420 and
250 nm, that is, in the near-UV region. Similar, but distinctly different features are observed for other explosives.
Finally, a custom algorithm classifies the collected spectral data and outputs an acoustic signal if a threat is
detected. This paper presents the complete DR hyperspectral imager which we have designed and built
from the hardware to the software, complete with an analysis of the device specifications. © The Authors.
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1 Introduction and Experimental Procedure

1.1 Hardware

We have developed over the last few years a device based on
differential reflectometry (DR) which is capable of detecting
explosive materials on surfaces such as luggage, parcels,
shoes, garments, etc. from a distance.! The DR (Ref. 1) mea-
sures the normalized difference between the reflectivities of
two adjacent parts of the same specimen or two slightly
different samples. Ultraviolet (UV) and blue light are
shone on a surface, for example, on a piece of luggage sit-
uated on a moving conveyer belt. Upon reflection, the light is
collected then diffracted by a spectrometer and its intensity
recorded with a charge coupled device (CCD) camera. A
computer processes the resulting data and produces in
turn a differential reflection spectrum. This differential tech-
nique is highly sensitive and provides spectroscopic data of
materials, specifically of explosives. As an example, 2,4,
6-trinitrotoluene (TNT) displays strong and distinct features
in differential reflectograms near 420 nm, that is, at the edge
of the UV and visible region of the light spectrum.” Similarly,
but distinctly different features are observed for other explo-
sives, whereas nonexplosives display essentially no structure
in the pertinent wavelength region (280 to 450 nm).> We
have developed an improved hardware specifically designed
for the fast detection of explosives on surfaces such as
luggage for airport security or parcels for air shipping.
DR (also known as differential reflection spectroscopy) is
a surface analytical technique that uses visible and UV light
as a probing medium to reveal details about the electronic
structure. In other words, the instrument detects the energies
that electrons absorb from photons as they are raised into
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higher, allowed quantum (energy) states. Since each material
has a specific electronic structure, the measurement of the
characteristic energies for “electron transitions” serves as
a fingerprint for identifying these substances. The differential
reflectivity, which is proportional to the complex dielectric
constant' as a function of wavelength, is unique to each
material, making DR a viable investigative tool in materials
science and particularly to explosives.

A number of different designs for a DR device are con-
ceivable. For example, the object to be investigated is moved
(on a conveyor belt for airport baggage scanning) and two
reflectivities R; and R, are measured milliseconds apart
(see Fig. 1). A broadband light source (Energetiq EQ99),
200 to 500 nm, is focused on the exterior of the luggage
to be scanned due to a quartz collecting lens (50.8 mm diam-
eter and 60 mm focal length) combined with a flat aluminum
mirror (set at 90 deg) and a quartz focusing cylindrical lens
(30 mm length, 20 mm width, and 25 mm focal length). The
projected line, which is perpendicular to the direction of the
scan as shown in Fig. 1, is 600 mm long by 3 mm wide on
the conveyor belt. The focusing optics is located at 450 mm
above the conveyor belt. Since the beam is diverging from
the lens downward, at midheight (where the top of the
luggage is located) the beam is about 300 x 3 mm?.

A custom-designed spectrograph (f-number of 3) which
includes a custom design collection optics (a three-mirror
fold system matching the f-number of the spectrograph
with a primary mirror of about 10X 40 mm) made by
Horiba Jobin-Yvon coupled with an UV CCD camera
(Sarnoff CAM512UYV, 512 x 512 pixels, 10 X 10 mm sensor
size, 10 to 400 frames/s, quantum efficiency >50% over the
range of interest, i.e., 250 to 450 nm) collects the reflected
photons. Since there are 512 pixels along the scanning line,
at midheight (i.e., on the top of the luggage) each scanning
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Fig. 1 Schematic representation of the differential reflectometry scanner (a). Picture of an actual device
scanning a bag (b). (Adapted with changes from Ref. 4.)

pixel is 0.58 X 3 mm. Our custom analysis software analyzes
and classifies the signal which outputs an acoustic and visual
indicator if traces of explosive are detected.

1.2 Spectral Data

Figure 2(a) depicts characteristic spectral features for C4
(91% RDX [1,3,5-trinitroperhydro-1,3,5-triazine] and 9%
plasticizer, binder, and oil), TNT, penta-erythritol tetranitrate
(PETN), and ANFO (94% ammonium nitrate and 6% diesel
fuel). It can be observed that each type of explosive has
a different critical energy range for optical absorption, that
is, PETN, ANFO, C4, and TNT have absorption edges at
290, 335, 340, and 420 nm, respectively. These absorption
edges have different center wavelengths and different full
widths from one another, therefore, the differential reflecto-
grams allow us to distinguish each explosive (see below
differentiation algorithm). The origin of the absorption
edges stem from electronic transitions which are observed
due to hydrogen bonds between explosive molecules in
condensed state.” Without hydrogen bonds, the energy levels
are different and the absorption edges listed above are not
observed. Figure 2(b) displays DR spectra of white powder
materials (flour, Splenda, and salt) which are similar in
physical appearance to explosives but have substantial
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different spectral features which allows one to distinguish
them from one another. Additionally, Fig. 2(b) displays
the DR spectra of a red jacket and denim jeans as examples
of background materials on which explosives residue can be
found. The explosives spectral fingerprints are also clearly
different than these background clothes.

The quality of the spectral fingerprints (shown in Fig. 2)
is hardware dependent. That is, the signal-to noise-ratio
depends on hardware parameters. Most of these parameters
are set by the manufacturer. For example, the read-out noise
from the detection camera or the light source power, fixed at
20 W, imposes a fixed number of photons interacting with
the sampled surface and a given noise floor for any sample.
The most important adjustable parameters are the acquisition
time and the scanning speed. Figure 3 displays DR spectra of
TNT measured with acquisition times ranging from 5 to
100 ms (corresponding to 200 and 10 frames/s, respec-
tively). It is observed that the relative noise level increases
as the acquisition time decreases. Furthermore, when plot-
ting the signal-to-noise ratio as a function of the acquisition
time a linear relationship is observed with a correlation coef-
ficient of 0.82, see Fig. 4. Note that the signal is taken to be
equal to the absorption edge amplitude.

The other important adjustable parameter is the conveyor
scanning speed. Fig. 5(a) shows DR spectra of TNT for
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Fig. 2 (a) Differential reflectograms of some common explosive materials (TNT, C4, ANFO, and PETN).
(b) Differential reflectograms of various nonexplosive materials (white powders: flour, Splenda, salt, and
typical background materials, such as a red jacket and denim jeans).
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Fig. 3 Unfiltered differential reflectograms of TNT at various acquis-
ition times (equal to one over frame rates). The curves have been
shifted upward for clarity.

various scanning speeds ranging from 10 to 30 cm/s. This
range is limited by the electro-mechanical design of the
conveyor. Figure 5(b) displays the signal intensity of the
TNT absorption edge as a function of the scanning speed.
A linear trend is observed with a correlation coefficient of
0.81. This result is counter intuitive. We would expect
that for a faster scanning speed the signal strength would
decrease since the amount of time an explosive threat is
exposed to the light beam drives the device’s response.
The shorter the amount of exposure time, the smaller the
signal should be. But the opposite is observed. This is
explained by the fact that the scanning range which we
use is narrow. In this range, the signal strength is correlated
with the camera frame rate. If we could expand the scanning
range we would expect a result closer to our intuition. For
high speeds, explosive residues on the suitcase being
scanned would have a short interaction time with the light
beam and therefore would generate a small signal intensity.
On the other hand, for a low speed, the explosive residues
would be measured in two consecutive frames and therefore
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Fig. 4. Signal-to-noise ratio for a given TNT sample as a function of

the acquisition time. A linear trend is observed with a correlation
coefficient of 0.82. No filter was applied.
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when we calculate the differential reflectivity, a smaller sig-
nal would be observed. In other words, the signal strength is
dependent on the difference in reflectivities between the two
parts being measured. For similar materials, the difference is
small whereas for dissimilar materials, the difference is large.

In summary, the acquisition time and scanning speed have
both a strong influence on the signal-to-noise ratio. The
signal-to-noise ratio has an impact on the limit of detection.
False positive rates and true positive rates of detection will be
discussed in a later section.

2 Algorithm: Data Processing

The software design flow, as shown in Fig. 6, can be catego-
rized into four main stages, and is executed on each frame
from the UV camera. The algorithm processes frame by
frame, but the calculation is done line by line (each line
corresponds to an individual spectrum). The stages of the
software are noise reduction, normalization, dimensional
reduction, and classification. We have detailed a similar
process in the previous work for TNT.® This section aims
to extend that process with some performance improvements
and additional explosives (or precursor) to the database of
threats automatically detected, namely AN, PETN, and C4.
We have found that due to the similarity in features, as shown
in Fig. 2, the classification process is almost identical for
these explosive materials.

The first step of the algorithm is to process each spectrum
with a low-pass filter to remove the high frequency spectral
noise. The filtered spectrum is then cropped in a second step
based on the location of the significant feature to be used for
the identification of each given explosive. This cropping
serves to reduce the dimensionality of the data for algorithm
training and increases the performance of the classification
stage as well as reduces the computational time. For exam-
ple, the C4 spectra were cropped between the wavelengths of
260 and 360 nm, the PETN spectra were cropped between
210 and 360 nm, and finally, the AN spectra were cropped
between 290 and 390 nm. These wavelength ranges were
determined through feature observation and optimized from
experimental classification results. Next, each spectrum was
normalized in a third step so that the amplitude covers the
range between 0 and 1. The purpose of the normalization
is to account for the wide range of amplitudes that are
observed from different amounts of explosives in a given
spectrum. The noise in the spectrum, although reduced
through filtering, is amplified by the normalization. There-
fore, a second round of noise reduction is applied in a fourth
step. This preclassification processing ensures maximal per-
formance of the classification stage.

We use principal component analysis (PCA) to reduce
dimensionality further, projecting each spectrum onto the
five most significant eigenvectors.® PCA is implemented
identically for all explosives. The result of this process is
the reduction of a 150-point spectrum into a 5-point vector,
making real-time classification feasible. This stage can be
seen in the design flow in Fig. 6 as “dimensional reduction.”

The current classification methodology for determining
the presence of explosives on a surface is based on support
vector machines (SVM). The SVM algorithmﬁ‘8 is a classi-
fier that finds a hyperplane in the kernel space that maxi-
mizes the margin between explosive and nonexplosive
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Fig. 5 Differential reflectograms of TNT for various conveyor scanning speeds (a). Signal-to-noise ratio
of a given TNT sample as a function of the conveyor speed (b). The acquisition time was 10 ms for all

measurements and no filter was applied.

spectra. We found this pattern recognition algorithm to be the
most suitable for our application.

SVM classifiers were trained for each explosive to maxi-
mize our ability to identify threat and nonthreat samples. The
general composition of each data set was thousands of
nonexplosive spectra and hundreds of explosive spectra.
A 10-fold cross-validation process was used to determine
the performance of the classifier, in which the explosive and
nonexplosive samples are split evenly into 10 subsets. The
purpose of the 10-fold analysis is to remove bias from any
particular subset of the data. Nine of the 10 subsets are used
for training and one for verification. This process is repeated
10 times for each subset, resulting in a complete analysis of
the classifiers generated.’

3 Implementation and Optimization of
Processing Algorithm

The application of our explosive detection technique requires
an implementation with real-time performance. The real-
time performance requires that the data be processed faster
than it is acquired. In addition, the system as a whole needs to
detect the smallest explosive residue possible. Therefore,
a tradeoff has to be found between the acquisition rate,
conveyor speed, and data processing. In order to achieve
a useful application performance, the algorithm was tran-
scribed into a high performance C implementation. This

implementation pays special attention to accuracy, loop
unrolling for repetitive calculations, and the use of an
optimized mathematical library which utilizes basic linear
algebra subprograms.'®

The implemented real-time algorithm transfers one frame
of data from the camera into a memory buffer, then processes
it using the detection algorithm before the next frame is
acquired and transferred into the memory buffer. It is imper-
ative that the algorithm process be faster than the camera
acquisition rate so that no frame potentially containing
threats is lost.

Figure 7 displays computational times executed on a
Windows 7-operated computer with a Quad Core Intel
Xeon W3520 processor running at 2.67 GHz with 12 GB
of RAM. The implemented algorithm runs a Boolean output
classifier (TNT versus nonthreat) on a full 512 x 512
data frame.

MATLAB runtime is used as the baseline for comparing
code performances, see Fig. 7. Using “SVM Light,”'! a
versatile C implementation for training and classifying
with SVM and our C code transcribed custom-designed
algorithm, described above, the computational time is
reduced from 120 to 30 ms/frame. This is a dramatic
4-fold speed improvement. Optimizing the SVM code to
our application gained about 5 ms, reducing the per frame
computational time to 25 ms. Upon further analysis of the
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Fig. 6 Algorithm design flow. The input is a 512 x 512 differential image. The output is the result of clas-
sification which labels each spectrum as threat (red) or nonthreat (green), a 512 pixels long vector.
Dimensions of the data are shown after each step. Typical spectra are shown at various stages of

the process in the top row.
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Fig. 7 Computation time as a function of the implemented code used.

individual steps in the algorithm, it was determined that the
filtering stage used the majority of the computational time
(about 20 ms or 75% of the optimized C implemented algo-
rithm). This stage uses a one-dimensional median filter
with a 15-pixels wide window. Such a large window size,
necessary to significantly reduce the noise,* requires a large
amount of computation. Replacing the median filter with
a Butterworth filter significantly reduced the computational
time another 3-fold to about 8 ms/frame, while sacrificing
a relatively small amount, about 25%, of noise reduction.
The current system developed, given the 8 ms/frame
computational time, allows time for 12 additional classifiers
(one for each explosive) while maintaining real-time perfor-
mance. In order to maximize the limit of detection'” and the
number of explosives detectable in real time, the camera
frame rate is set at 10 Hz (or 100 ms/frame). If one were
to increase the number of explosives to be detected at the
same time or increase the frame rate major changes would
be necessary. For example, the hardware use to run the
algorithm would need to include the addition of a graphical
processing unit (GPU). GPUs specialize in parallelized
many-thread computations are known to yield large increases
in speed for image processing applications.'®> Another pos-
sible approach would be to use a multicategory classifier
instead of one classifier for each explosive material.

4 Detection System Performance

4.1 Limit of Detection

The absolute limit of detection of the present DR system was
determined to be about 100 ng for TNT.'? Briefly, the limit of
detection is defined as the mass of explosive material neces-
sary to obtain a signal-to-noise ratio of three. In a past experi-
ment,'> we acquired the DR spectra of TNT samples of
different sizes ranging from filling a full square pixel, 0.58 x
3 mm (1.74 mm?) by 4-um thick corresponding to about
11 ug, down to filling about 1% of a pixel, a triangular
shape 0.58 X 0.05 mm (0.0145 mm?) by 4-um thick*
which is about 100 ng. In this experiment, the samples
were prepared by packing a fine powder on a flat substrate.
The thickness of 4 um was determined to be an upper limit of
the minimal interaction thickness between the TNT and the
probing beam. Below this thickness, it becomes very difficult
to control the flatness and packing of the fine TNT powder.
Therefore, it is difficult to determine the minimal interac-
tion thickness of TNT in the UV region of the spectrum.
After acquiring the spectra, we extracted the signal-to-
noise ratio for each sample size. We found a linear relation-
ship between the sample size and the signal-to-noise ratio.*
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From this linear relationship, we evaluated the limit of detec-
tion as per its definition. It should be said that this definition
may not always lead to a usable limit of detection. We have
observed that, for the algorithm presented in the previous
section, the practical limit of detection is about two times
larger at about 200 ng for TNT (i.e., signal-to-noise ratio
of about 5) than the absolute limit. Similar limit of detection
values has been found for other explosives. It should be
added that the sample shape has a very strong influence
on the detection limit."* First, the geometry of the sample
matters. Only the top 4 um of explosive material will be
sensed by the scanning beam. Therefore, detecting thick
samples will increase the detection limit. Second, the rough-
ness was found to have a strong influence on the reflectivity
of the sample'* and as a consequence has an effect on the
limit of detection. The DR is most sensitive for strongly
diffusive and weakly specular samples, that is, for rough
rather than smooth sample surfaces. Real threats, such as
explosive residues in the form of particles or finger prints,
are thin with diffusive surfaces and therefore the method
presented above is of practical significance.

Future development is being considered to improve the
limit of detection of DR in order to reach trace level detec-
tion. This means being able to sense a few tens of micrometer
size diameter particles'® weighing between one and a few
tens of nanograms. In order to attain such sensitivity, one
could increase the intensity from the light source, for exam-
ple, using more efficient optics (i.e., custom designed) or a
more powerful source, or increase the size of the collection
optics, thus increasing the photon flux going to the camera.
Our current system is only using about 10% of the dynamic
range of the camera. Using 100% of the dynamic range
would allow our detection system to reach a 10-ng detection
limit.

Other standoff optical techniques have been applied to
explosive detection by hyperspectral imaging. In particular,
Raman [deep UV'®and coherent anti-Stokes Raman
spectroscopy'’] and short-wave infrared'® have been devel-
oped to detect nanogram range threats, however, these
techniques suffer from slow scanning speed and they cannot
at the present time handle large surface screening at these
detection levels. On the other hand, DR is about two orders
of magnitude faster with the ability to screen the top surface
of carry-on size luggage in about 3 s.

In addition to the limit of detection, the performance of a
detection system is evaluated by its capacity to differentiate
threats and nonthreats. Such performance is evaluated using
receiver operating characteristic (ROC) curves which display
the true positive rate as a function of the false positive rate for
any detection system.

4.2 ROC Curves

The ROC curves for each explosive are displayed in Fig. 8.
These results were generated for each classifier (i.e., each
explosive individually). The classifiers were trained for each
explosive as described in Sec. 2. For each explosive, two differ-
ent data sets were used to train the classifiers and therefore
generated two ROC curves. In the first case, the data set con-
tains explosives spectra of sample sizes ranging from about
0.03 to 100 pg. That is from below the limit of detection to
above the maximum dynamic range of our system. In the sec-
ond case, the data set contains only explosives spectra with
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Fig. 8 Receiver operating characteristic curves of three materials: PETN, C4, and AN. The curves
labeled “All samples” represent the classifier trained with every explosives sample in the set, sample
sizes range from 0.03 and 100 ug (0.3% and above fill factor). The curves labeled “Large samples
only” represent the classifier trained without the samples close to or below the limit of detection.
Large sample sizes range between 0.2 and 100 xg (2% and above fill factor).

SNR above 5 (sample sizes ranging from 0.2 to 100 ug), which
is above twice the limit of detection. Removing samples near
the limit of detection have a small effect on the system
performance. For example, in the case of C4, at 5% false
positive rate, the true positive rate increases only by 0.05
(from 0.92 to 0.97). This demonstrates that the robustness of
the algorithm developed is in the 0.2 to 100 ug range.

Figure 8 displays a good performance of the detection
system as long as the sample size is above about 0.2 ug
(SNR = 5). Below this value, the classification algorithm
loses its ability to differentiate explosives from nonexplo-
sives materials due to noise confusion. That is, the algorithm
detects noise where the spectral features of explosives are
normally located which causes a dramatic increase in the
false positive rate.

The data set of each explosive varied in regards to the number
of explosive and nonexplosive samples used in training. PETN
was trained with 30,000 non-PETN samples and 825 PETN sam-
ples. C4 was trained with 14,000 non-C4 samples and 520 C4
samples. AN was trained using 20,000 non-AN samples and
1200 AN samples. Approximately 10% of each explosives sam-
ple sets was comprised of samples near the limit of detection and
was removed to demonstrate the difference shown in Fig. 8. The
nonexplosives samples were generally comprised of clothing
materials of different compositions and colors.’

5 Conclusions

This study demonstrates that various explosive substances,
such as TNT, RDX, C4, PETN, and AN can be identified
with good accuracy down to the low microgram range by
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applying differential reflection spectroscopy. This standoff
technique is fast, eye safe (no laser light or X-ray), auto-
matic, and does not require human involvement. For the
data processing, an algorithm has been developed which
involves noise reduction by filtering, cropping, and normali-
zation. For each explosive substance, two different data sets
were used to train the classifiers and to generate the ROC
curves. ROC curves yield true positive rates in the range
of 97%.
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