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Abstract. Transmission-type terahertz time-domain spectroscopy is
applied to evaluate crystallized lactose particle of size below 30 μm,
which is far too small compared to the wavelength of incident terahertz
(THz)-wave. The THz-absorption spectrum of lactose is successfully
deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm−1

(0.53 THz) and 45.6 cm−1 (1.37 THz) derived from α-lactose monohy-
drate, and a spectrum at 39.7 cm−1 (1.19 THz) from anhydrous β-lactose
after removal of the broad-band spectrum by polynomial cubic function.
Lactose is mainly crystallized into α-lactose monohydrate from the super-
saturated solution at room temperature with a small amount of anhydrous
β-lactose below 4%. The absorption feature is dependent on the crystal-
lized particle size and the integrated intensity ratio of the two absorptions
due to α-lactose monohydrate is correlated in linear for the size. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.53.3.031203]
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1 Introduction
A terahertz (THz)-electromagnetic wave in the far infrared
region is useful to characterize material properties based
on the intra-vibration in relatively large organic molecules
and/or the inter-molecular vibration incorporated hydrogen-
bonding. The absorption feature of such organic material
is significantly dependent on the molecular and crystal
structures as demonstrated for L-phenylalanine comparing
to L-tyrosine,1 three different retinal isomers with polyene
chain,2 DL-alanine racemic compound comparing to D-
and L-alanine,3 and so on. Therefore, the lines peculiar to
material can be recognized as the spectral fingerprint. To
date, a lot of organic materials have been characterized by
the spectral fingerprint which is useful not only for the quali-
tative analysis but also for the quantitative evaluation. For
example, we previously demonstrated that the anomer con-
tent of lactose in the milled powder can be precisely deter-
mined by the integrated intensity ratio of THz-absorptions
due to the α-form and the β-form crystals.4 However, the
crystallized particle size of organic materials has not been
studied by THz-spectroscopy. In the case of saccharides,
such as lactose used in food products, evaluation of the crys-
tallized particle size is often required in sandiness which can
be sensorically detected for sizes over 10 to 16 μm. In gen-
eral, the size is evaluated by optical microscope or scanning
electron microscope. Although such methods achieve a pre-
cise evaluation on the surface, the particle inside the products
cannot be observed because the transmission length of the
light or the electron is limited to regions within a submicrom-
eter. In contrast, a THz-wave is notably absorbed in water but
easily passed through most organic materials compared to
UV–vis–infrared light or electron-beam. In concept, it is con-
sidered that the THz-imaging developed in some fields5–7

is useful to disclose the shape of particle inside materials.
However, it is not easy to perform the imaging of a particle

with a size below 20 μm, which is far too small compared to
the wavelength of a THz-wave around 1 THz. On the other
hand, if the THz-absorption is dependent on size, THz-spec-
troscopy is useful to estimate a particle with such a small
size.

In this article, transmission-type terahertz time-domain
spectroscopy (THz-TDS) is applied to evaluate a lactose
powder, which consists of crystallized particles with a size
below 30 μm, and precise analysis on the absorption feature
is performed to estimate the particle size.

2 Experimental
A transmission-type THz-TDS system was used to character-
ize lactose-powders. A detailed configuration of the system
was shown elsewhere.4 In this system, a femto-second fiber
laser (peak wavelength at 782 nm, half-width of 87 fs, rep-
etition rate of 48 MHz) was used as a pump light and a probe
light after being split in two ways by a half-mirror. The pump
light chopped at 1 kHz was focused and irradiated on a THz
emitter consisting of a dipole antenna with a 10 μm-gap
space fabricated on low-temperature grown GaAs (LT-GaAs)
layer and attached on a hemispherical Si-lens, on which the
antenna was biased at 10 V to generate a transient current
in the pico-second order. ATHz-pulse generated on the emit-
ter was radiated through the Si-lens, then focused normally
incident to the sample using two off-axis parabolic metal
mirrors. After passing through the sample, the THz-pulse
was introduced to the detector with the same antenna con-
figuration of the emitter by two off-axis parabolic mirrors
and a hemispherical Si-lens. When the THz-pulse was intro-
duced to the antenna in the detector, the probe laser light
was simultaneously irradiated to detect the pulse by a
sampling technique, where time-delay of the probe light
was controlled by a retro-reflector and a micro-step stage
controller with a step distance of 1 μm. The sampling data
were recorded in a PC after signal-amplification, lock-in
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noise reduction, and A/D conversion. The recorded pulse
data was processed by a discrete Fourier transform (DFT)
after a Gaussian-window was superposed on the pulse data
to remove aliasing. Temperature in the THz-TDS system was
carefully controlled at 20°C.

Commercially available pure lactose α-DðþÞ-lactose
monohydrate [Lα · H2O: O − β-galactopyranosyl-(1 → 4)-
α-D-glucopyranose monohydrate (C12H22O11 · H2O)]
powder (≥99% total lactose basis, ≤0.05% glucose Sigma-
Aldrich, St. Louis, Missouri) was used to prepare a lactose
solution and for seeding. The anomer (Lβ: anhydrous
β-DðþÞ-lactose) content in the Lα · H2O powder was about
4% in the commercial specifications. Lactose particles were
extracted from lactose supersaturated solution (1 g-lactose
powder/3 cc-water) and the size was controlled by the extract
period, where ultra-pure water with the resistivity above
18.2 MΩ cm was used as a solvent. The crystallization was
enhanced by seeding 10 mg-Lα · H2O powder added into the
solution at 20°C with stirring (300 rpm), and then the
extracted lactose was dried at 60°C for three days in an incu-
bator after removal of the residual solution. The extracted
lactose powders consist of the crystallized particles, which
are then filled and lightly compressed in a metal aperture
of 0.7 mm-thickness with a hole of 6 mm-diameter. A
THz-wave was normally incident to the lactose-sample
placed with the aperture in the THz-TDS system. The weight
of the lactose-powder used for the THz-TDS was measured
by an electronic weight-scale.

3 Result and Discussions

3.1 THz-Absorption Feature of Lactose Powder

Figure 1 shows the THz-spectra in the THz-TDS system
without a lactose-sample, and the inset shows the THz-pulse
and Gaussian-window superimposed on the pulse before
DFT. Periodic fluctuation was observed in the THz-spectra
(plain line) but successfully removed by using the Gaussian-
window (bold-line). If the THz-pulse was sufficiently
intense, the fluctuation due to aliasing was negligible, but the

pulse-edge in relatively weak signal passed through samples
should be taken into account for the precise analysis.

A typical prelimary absorption spectrum of the Lα · H2O
powder consists of several narrow-bands and a broad-band
as shown in Fig. 2, where the experimentally obtained data
were shown by filled-circles with a fit (dash-line), by the
deconvoluted spectra (solid-lines), and broad-band (dot-
line). The spectral deconvolution was successfully achieved
by Lorentzian as previously shown for the lowest lying
spectrum8 after removal of a broad-band by a polynomial
cubic function. The narrow-bands with peaks at 17.1 cm−1

(0.53 THz) and 45.6 cm−1 (1.37 THz) can be recognized as
the fingerprint of Lα · H2O,

9,10 which were denoted as α1 and
α2, respectively. The absorptions derived from Lα · H2O are
recognized to be associated to lactose molecular-rotations
in the crystal as indicated by first principle calculations.10

A weak absorption with a peak at 39.7 cm−1 (1.19 THz)
denoted as β1 can be suggested to be derived from Lβ
because the absorption was dominant in Lβ powder.4

3.2 Crystallization Behavior of Lactose in
Supersaturated Solution

Figure 3 shows a photograph of crystallized lactose-particles
observed by a Nomarski differential interference micro-
scope, where the lactose was crystallized for (a) 24, (b) 72,
and (c) 120 h and then dispersed in ethanol by ultra-sonic
vibration for 20 s after being dried in an incubator. It has
been recognized that lactose in the supersaturated solution
around room-temperature can be mainly crystallized into
Lα · H2O by seeding of the Lα · H2O powder. The crystalli-
zation behavior is also dependent on this condition because
the β-lactose present in the aqueous solution selectively
blocks the growth of the (020) face, which results in growth
along the b direction (not the −b direction) and the
Tomahawk shape as shown in Fig. 4.11,12 Further, it was dem-
onstrated by a dimethyl sulfoxide-lactose system with con-
trolled β-lactose content in the solution that the Tomahawk
shape is extended along the −b direction, reducing the
growth along the c direction with increasing β-lactose

Fig. 1 Fourier transformed THz-spectra from the THz-pulse without
Gaussian window (plain-line) and superposed Gaussian window
(bold-line). The inset shows the THz-pulse and Gaussian window.

Fig. 2 Absorption spectrum of preliminary used α-lactose powder,
where experimentally obtained data, broad band background, decon-
voluted spectra and the fit are shown by filled-circle, bold dash-line,
solid-line, and plain dash-line, respectively. Absorptions due to α-lac-
tose monohydrate and anhydrous β-lactose are denoted as “α1,” “α2,”
and “β1,” respectively.
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content in the lactose solution.12 Since β-lactose is present
above 60% in aqueous lactose solutions around room-tem-
perature by the mutarotation in equilibrium,13 the crystal is
enlarged to the −b direction as shown in Fig. 4. In this article,
the crystal size was determined along the b axis in the aniso-
tropic shape, and the average crystal size was uniquely
increased with the crystallized period as shown in Fig. 5.

3.3 Dependence of THz-Absorption Feature on
Crystallized Lactose Particle Size

Figure 6 shows the absorption spectra (solid-line) of lactose
consisting of crystallized lactose particles with an average
size of 4.3, 14.7, and 27.6 μm, where the lactose crystals
were extracted for 24, 72, and 120 h from the lactose solu-
tion, respectively. The inset shows deconvoluted spectra
of the absorptions due to Lα · H2O crystal, in which the

absorption of anhydrous Lα was removed. It was mentioned
that the broad-band was numerically removed by a polyno-
mial cubic function, and the absorption coefficient is normal-
ized by the weight of the lactose sample because the density
of lactose was different in aperture for each sample. As
expected from the particle shape, lactose was mainly crystal-
lized into Lα · H2O because the spectra were dominated
by the absorptions due to Lα · H2O (α1 and α2). Anhydrous
Lβ was also crystallized. It was probably formed on the Lα ·
H2O crystal in the drying process, but the content in the
extracted lactose was within 4%. The absorption features of
α1 and α2 were dependent on the particle size as shown in
the inset of Fig. 6. Details on the integrated absorption inten-
sity and the full-width at half-maximum (FWHM) for the
average particle size are shown in Fig. 7, in which the results
on the average particle size of 3 μm is for the preliminarily
used Lα · H2O powder. The α1 line width (filled-square)
was independent of the particle size. A significantly narrow
absorption spectrum of α1 with a FWHM of about 1.3 cm−1

has been reported by using a photomixer and continuous-
wave, however, the obtained THz-TDS was broader than

Fig. 3 Nomarski photographs of extracted lactose from the super-
saturated solution for (a) 24, (b) 72, and (c) 120 h.

Fig. 4 Miller indicates of Tomahawk shaped α-lactose monohydrate
crystal.12

Fig. 5 Dependence of average crystallized particle size of α-lactose
monohydrate on the crystallized period, where the crystal size was
estimated along the b-axis.

Fig. 6 Absorption spectra of extracted lactose from the super-
saturated solution with the average size of (a) 4.3, (b) 14.7, and
(c) 27.6 μm. The inset shows the deconvoluted α-lactose mono-
hydrate spectra.
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that,8 which is because of the resolution of the spectroscopy
methods. Since the FWHM of 3.7 cm−1 obtained in this
work was smaller than that of 4.91 cm−1 as demonstrated
by THz-TDS,8 but much broader compared to the native fea-
ture with an FWHM less than 1.3 cm−1, it is considered that
the spectrum width was not apparently changed in the results
under the resolution limit of the THz-TDS system. Pre-
viously, the significantly sharp feature of α1 was discussed
by the solid-state density functional theory and assigned to
externally hindered rotational modes in the crystal b-axis,
not to the internal modes.14 In such modes, the absorption
intensity can be expected to increase with the crystal size
much less than the wavelength of the incident THz-electro-
magnetic wave as shown in Fig. 7 (closed circles). On the
other hand, the absorption of α2 was broader than that
of α1 and the line width increased with the particle size
(open-squares). However, the integrated intensity of α2
(filled-squares) was scarcely increased with the particle size,

but the dependence was very small compared to α1. The
vibration mode of α2 was identified as molecular-rotation
in a lactose active mode by the first principles calculation.10

The significant difference of α2 feature is possibly due to the
absorption is due to the internal vibrations associated with
intermolecular hydrogen-bonding. The significant difference
of α1 and α2 intensities resulted in assignment of the particle
size. Figure 8 shows the intensity ratio of α2∕α1 for the aver-
age particle size. A ratio as high as 3.98 was linearly
decreased with the particles’ size and to 3.45 for the size
of 27.6 μm, where the correlative square-factor was 99.2%
on the least squares method. As a result, if the particles are
contained inside samples, the average particle size can be
nondestructively evaluated by the ratio of α2∕α1 obtained
by THz-TDS.

4 Conclusions
THz-TDS was applied to evaluate the average particle size
of crystallized α-lactose monohydrate. The dependence of
THz-absorption on the particle size below 30 μm was differ-
ent for the two spectra, with peaks at 17.5 cm−1 (0.53 THz)
and 45.6 cm−1 (1.37 THz). The integrated absorption inten-
sity ratio, which is linearly dependent on the particle size,
was able to assign the average particle size. The results in
this work showed a THz-absorption feature in organic crystal
that incorporates hydrogen-bonding was dependent on the
crystal size which was far smaller compared to the wave-
length of the incident THz-wave and can present a new
concept focused on the absorption intensities to evaluate the
crystal size of organic crystal.
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