Optical Engineering has had some outstanding special sections over the past few years and some that were not so great. To me, the key is the guest editors who provide the energy behind the special section. A good solid special section has around 10 to 20 papers all within the scope of a single subject. The subject must be interesting, timely, and important. We have had special sections with upwards of 30 thoroughly reviewed papers, and these specials have provided a great reference to scientist and engineers working in a particular field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Lithium niobate, LiNbO 3 , exists in a wide range of compositions, from congruent to stoichiometric. Undoped congruent LiNbO 3 suffers from a relatively low optical damage threshold that constitutes its major disadvantage for optoelectronic devices. The optical damage threshold is dependent on the amount of intrinsic defects and is considerably increased in stoichiometric material and in congruent material doped with specific impurities, such as Mg, In, Sc, and Zn. It has been recently shown that the doping with Hf leads to a significant increase of the photorefractive resistance at a threshold concentration of about 3 mol%. The study of the lattice location of Hf in LiNbO 3 and its interaction with other impurities and intrinsic defects started more than a decade before the discovery of the role of this impurity, as Hf was a convenient probe for combined studies using the nuclear techniques perturbed angular correlations and Rutherford backscattering spectrometry/channeling. An integrated review of the main results obtained with these techniques is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Laser sensing and imaging now have growing importance in various fields ranging but not limited to atmospheric chemistry, industrial process surveillance, agriculture, and medical diagnostics. More and more special conferences and symposia have appeared, devoted to certain aspects of sensing and imaging. LIDAR is popularly used as a technology to make high-resolution maps, with applications in archaeology, geography, geology, geomorphology, seismology, forestry, remote sensing, atmospheric physics, etc. Novel laser sources, spectroscopic approaches and imaging techniques play an increasing role as they enable noncontact sensing without or with only minimal sample pretreatment and/or sample preparation. Furthermore, the appearance of mid-infrared fiber laser sources is changing the application landscape of such techniques. In this special section, we present a collection of selective papers that represents to a certain extent the recent advances in laser sensing and imaging and the related technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Animal facilities produce large amounts of harmful gases such as ammonia, hydrogen sulfide, and methane, many of which have a pungent odor. The harmful gases produced by animal housing not only affect the health of people and livestock but also pollute the air. The detection of the harmful gases can effectively improve efficiency of livestock production and reduce environmental pollution. More and more optical detection methods are applied to the detection of the harmful gases produced by animal housing. This summarizes optical detection methods for monitoring the harmful gases in animal housing recently, including nondispersive infrared gas analyzer, ultraviolet differential optical absorption spectroscopy, Fourier transform infrared spectroscopy, and tunable diode laser absorption spectroscopy. The basic principle and the characteristics of these methods are illustrated and the applications on the detection of harmful gases in animal housing are described. Meanwhile, the research of harmful gases monitoring for livestock production based on these methods were listed. The current situation and future development of the detection methods for harmful gases generated by animal housing were summarized by comparing the advantages and disadvantages of each method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A resonantly pumped monolithic Ho:YAG nonplanar ring oscillator (NPRO) with single-frequency and dual-wavelength laser outputs is demonstrated. The Ho:YAG NPRO is resonantly pumped by a 1907-nm Tm:YLF laser. In single-frequency operation, the output power is 3.09 W, with a slope efficiency of 61% and an optical efficiency of 48% with respect to the pump power. Up to 10 W dual-wavelength laser output at 2091 and 2097 nm is also obtained from the Ho:YAG NPRO with the maximum pump power, with a slope efficiency of 61% with respect to the pump power.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A mid-infrared optical parametric oscillator (OPO) with an idler wavelength of 3.85 μm at a repetition rate of 200 kHz is presented, and a high-repetition-rate electro-optic (EO) Q-switched Nd∶GdVO4 laser with a double-crystal RbTiOPO4EO modulator is used as the pump source. The OPO is designed as an extracavity singly resonant optical parametric oscillator. The threshold value of the OPO system is only 1.3 W at 1.06 μm. When the MgO: periodically poled lithium niobate (MgO: PPLN) crystal is operated at 90°C and the pump power is 10.5 W with a repetition of 200 kHz, a maximum average output power of 1.82 W at idler wavelength of 3.85 μm and pulse width of 14.3 ns are obtained. The slope efficiency of the 3.85-μm laser with respect to the pump laser is 21.3%. The M2 factors of the 3.85-μm laser are 1.84 and 1.76 in the parallel and perpendicular directions, respectively. The mid-infrared tunability of 3.7 to 3.9 μm can be achieved by adjusting the temperature of MgO∶PPLN crystal from 210 to 35°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A laser steering system based on the Ti-diffusion lithium niobate (LiNbO3 ) waveguides is presented. A phase shifter based on the LiNbO3 waveguide is designed. This waveguide can provide a continuous phase shift for laser-phased-array (LPA) by changing the voltage loaded on it. The theory of irregular LPA based on the Ti-diffusion LiNbO3 waveguide phase shifter is studied numerically and experimentally. Beam steering with an angle of 1.37 deg is gained by a 1×3 array setup that agrees well with the theory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
An analytical apodization function of an elliptical mirror with an aperture angle greater than π is derived for the analysis of the focusing properties. The distribution of electric field intensity near the focal region is given using vectorial Debye theory. Simulation results indicate that a bone-shaped focal spot is formed under linearly polarized illumination, and a tight-circularly symmetric spot is generated under radially polarized illumination. The change in eccentricity causes such a change in the focusing pattern under radially polarized illumination, that a greater eccentricity causes a spot tighter in transverse direction but wider in axial direction. Under radially polarized illumination, the transverse and axial full-width-at-half-maximum will be 0.382λ and 0.757λ , respectively, and the conversion efficiency of the longitudinal component can go beyond 99%, when the semi-aperture angle is 2π/3 and the eccentricity is 0.6. It can, therefore, be concluded that the tight focusing pattern with strong and pure longitudinal field can be achieved under radially polarized illumination for particle acceleration, optical tweezers, and high-resolution scanning microscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A modification method is described for Rayleigh Doppler lidar wind retrieval. Compared to the double-edge theory of Korb et al. [Appl. Opt.38, 432 (1999)] and the retrieval algorithm of Chanin et al. [Geophys. Res. Lett.16, 1273 (1989)], it has a greater sensitivity. The signal-to-noise ratio of the energy monitor channel is involved in error estimation. When the splitting ratio of the two signal channels is 1.2, which usually happened during wind detection, it will improve the measurement accuracy by about 1% at 30 km altitude for a Doppler shift of 250 MHz (44 m/s ). Stabilities of retrieval methods, i.e., errors caused by the spectrum width deviation including laser pulse, Rayleigh backscatter, and filter transmission curve are first discussed. The proposed method increases the resultant precision by about 15% at 30-km altitude assuming an 8-MHz deviation in full width at half maximum of the Fabry–Perot interferometer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
The imaging of underwater objects illuminated by artificial light has been of long-standing interest to investigators working in oceanographic environments. Pulsed lasers together with range-gated technology have been widely used for underwater optical imaging applications. In order to describe the formation of underwater range-gated images, a pulsed laser underwater imaging model based on pulse spatial and temporal broadening is proposed. Experiments based on a self-assembled laser range-gated imaging system were implemented in our laboratory. Results show good agreements between experiments and simulations. Both results also confirm higher image contrast toward the tail region of the target-reflected light. Furthermore, experiments on underwater image blur and restoration are also implemented and show good image recovery results. The modulation transfer function-based restoration mechanism also implies a way to eliminate the blur effect caused by light forward scattering.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
2-μm fiber lasers have become a research topic with an increased emphasis due to a variety of applications including eye-safe LIDAR, spectroscopy, remote sensing, and mid-infrared (mid-IR) frequency generation. We review our latest development on various 2-μm fiber laser sources, including single-frequency fiber lasers, Q-switched fiber lasers, mode-locked fiber lasers, and mid-IR supercontinuum fiber sources. All these fiber laser sources are based on thulium and holmium ions using our proprietary glass fiber technology. Potential applications of these fiber laser sources for sensing are also briefly discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Laser range-gated imaging systems can obtain images of targets hidden around the corner, with an intermediary reflective surface with certain specular reflection characteristics. This imaging mode is called non-line-of-sight imaging. This paper describes a simulation of the target signal illuminance and disturbance radiation on the photosensitive surface of a non-line-of-sight imaging system based on modeling of an intermediary reflective surface. Meanwhile, an image contrast model of a non-line-of-sight imaging system is constructed. Simulation of the image contrast for a laser range-gated imaging system as a non-line-of-sight imaging equipment was carried out by analyzing the effects of varying the target signal illuminance and intermediary reflective surface reflection. Our simulation results show that the reflection characteristics of the intermediary reflective surface have a significant effect on the non-line-of-sight imaging. Although ordinary active laser imaging can realize non-line-of-sight imaging for an intermediary reflective surface with significant specular reflection characteristics, a laser range-gated imaging system is indispensable for non-line-of-sight imaging with commonly used intermediary reflective surfaces without significant specular reflection characteristics. The image contrast model of non-line-of-sight imaging constructed in this paper provides insights into the theoretical analysis and system design, as well as practical application of non-line-of-sight imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Investigations focusing on devising rapid and accurate methods for developing signatures for microorganisms that could be used as biological warfare agents’ detection, identification, and discrimination have recently increased significantly. Quantum cascade laser (QCL)-based spectroscopic systems have revolutionized many areas of defense and security including this area of research. In this contribution, infrared spectroscopy detection based on QCL was used to obtain the mid-infrared (MIR) spectral signatures of Bacillus thuringiensis, Escherichia coli, and Staphylococcus epidermidis. These bacteria were used as microorganisms that simulate biothreats (biosimulants) very truthfully. The experiments were conducted in reflection mode with biosimulants deposited on various substrates including cardboard, glass, travel bags, wood, and stainless steel. Chemometrics multivariate statistical routines, such as principal component analysis regression and partial least squares coupled to discriminant analysis, were used to analyze the MIR spectra. Overall, the investigated infrared vibrational techniques were useful for detecting target microorganisms on the studied substrates, and the multivariate data analysis techniques proved to be very efficient for classifying the bacteria and discriminating them in the presence of highly IR-interfering media.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
TOPICS: 3D modeling, Clouds, Buildings, Data modeling, Image segmentation, Optical engineering, Reconstruction algorithms, Laser scanners, Visual process modeling, Systems modeling
Architecture reconstruction using terrestrial laser scanner is a prevalent and challenging research topic. We introduce an automatic, hierarchical architecture generation framework to produce full geometry of architecture based on a novel combination of facade structures detection, detailed windows propagation, and hierarchical model consolidation. Our method highlights the generation of geometric models automatically fitting the design information of the architecture from sparse, incomplete, and noisy point clouds. First, the planar regions detected in raw point clouds are interpreted as three-dimensional clusters. Then, the boundary of each region extracted by projecting the points into its corresponding two-dimensional plane is classified to obtain detailed shape structure elements (e.g., windows and doors). Finally, a polyhedron model is generated by calculating the proposed local structure model, consolidated structure model, and detailed window model. Experiments on modeling the scanned real-life buildings demonstrate the advantages of our method, in which the reconstructed models not only correspond to the information of architectural design accurately, but also satisfy the requirements for visualization and analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Optical parametric oscillator is an attractive way of generating tunable mid-infrared light in the spectral range where lasers simply do not exist—for the needs of spectroscopy, medical applications, remote sensing, etc. We will go through the fundamentals of the optical parametric oscillator first and then introduce the related new phase-matching, cavity design, and spectroscopic techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Time-of-flight (ToF) range measurements rely on the unambiguous association of each received echo signal to its causative emitted pulse signal. This definite association is difficult when measuring long ranges at a high repetition rate, resulting in ambiguous range measurements. While methods and algorithms exist to overcome this fundamental problem of ToF measurement techniques like radar these may not be directly applied to lidar without adaptations. Especially, in airborne laser scanning, up to now it was a requirement to strictly avoid range ambiguities during data acquisition. We present a new method for resolving range ambiguities fully automatically in scanning lidar, enabling measurements exceeding the maximum unambiguous measurement range by far. As a theoretical foundation of our approach, we introduce a specific model of the lidar transmission path (i.e., emitter–target–receiver) accounting for the time-variability of consecutive measurements. Based on this model, we discuss the influence of intentional variation of the intervals between pulse emissions on the intervals of successively received echoes and delineate an algorithm for automated, definitive association of pulse emissions and their resulting echoes. Simulation results indicate a probability of incorrect associations of <10−5 , which we positively proved by applying this technique to real-world scan data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
TOPICS: Human vision and color perception, Visual optics, Imaging systems, Eye, Optical engineering, Medical research, Biomedical optics, Systems engineering, Visual system, Light emitting diodes
The human visual system is an exquisitely engineered system that can serve as a model and inspiration for the design of many imaging systems. Optics and optical engineering play a key role in developing new techniques and approaches for both the study of human vision and the design of novel imaging systems. For example, advances in optical sensing and imaging have led to important discoveries about retinal image processing, and optical design tools are necessary for improving vision in patients. While advances in optics are improving our understanding of the human visual system, this understanding has also led to improvements in artificial vision systems, image processing algorithms, visual displays, and even modern optical elements and systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
TOPICS: Ear, Databases, Feature extraction, Data modeling, Detection and tracking algorithms, Visualization, Associative arrays, Wavelets, Optical engineering, Chemical species
The Gabor wavelets have been experimentally verified to be a good approximation to the response of cortical neurons. A new feature extraction approach is investigated for ear recognition by using scale information of Gabor wavelets. The proposed Gabor scale feature conforms to human visual perception of objects from far to near. It can not only avoid too much redundancy in Gabor features but also tends to extract more precise structural information that is robust to image variations. Then, Gabor scale feature-based non-negative sparse representation classification (G-NSRC) is proposed for ear recognition under occlusion. Compared with SRC in which the sparse coding coefficients can be negative, the non-negativity of G-NSRC conforms to the intuitive notion of combing parts to form a whole and therefore is more consistent with the biological modeling of visual data. Additionally, the use of Gabor scale features increases the discriminative power of G-NSRC. Finally, the proposed classification paradigm is applied to occluded ear recognition. Experimental results demonstrate the effectiveness of our proposed algorithm. Especially when the ear is occluded, the proposed algorithm exhibits great robustness and achieves state-of-the-art recognition performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We propose the synthetic aperture wavefront sensing approach. It is based on acquiring several sets of measurements of the wavefront slopes by displacing sequentially the microlens array with respect to the unknown wavefront. These measurements are stacked together and processed as if obtained with a single-sampling array with an effective number of subpupils equal to the product of the number of microlenses by the number of displacements. We analyze and compare the performance of this approach with the method of modal coefficient averaging. The comparison is made in terms of the squared wavefront reconstruction error, spatially averaged over the pupil and statistically averaged over the noise and the aberrations of the population. We focused our attention on its applications to eye aberrometry. Our numerical results were obtained for a population statistics consistent with a wide sample of young adult eyes using different sampling grids and with several signal-to-noise ratios. They indicate that the synthetic aperture wavefront sensing is affected by less bias and noise propagation than the averaging method, providing smaller mean-squared estimation error. The number of complete Zernike radial orders that can be estimated using the synthetic aperture approach is consistently higher than that allowed by the conventional method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Measurement of intraocular lens (IOL) alignment implanted in patients in cataract surgery is important to understand their optical performance. We present a method to estimate tilt and decentration of IOLs based on optical coherence tomography (OCT) images. En face OCT images show Purkinje-like images that correspond to the specular reflections from the corneal and IOL surfaces. Unlike in standard Purkinje-imaging, the tomographic nature of OCT allows unequivocal association of the reflection with the corresponding surface. The locations of the Purkinje-like images are linear combinations of IOL tilt, IOL decentration, and eye rotation. The weighting coefficients depend on the individual anterior segment geometry, obtained from the same OCT datasets. The methodology was demonstrated on an artificial model eye with set amounts of lens tilt and decentration and five pseudophakic eyes. Measured tilt and decentration in the artificial eye differed by 3.7% and 0.9%, respectively, from nominal values. In patients, average IOL tilt and decentration from Purkinje were 3.30±4.68 deg and 0.16±0.16 mm, respectively, and differed on average by 0.5 deg and 0.09 mm, respectively, from direct measurements on distortion-corrected OCT images. Purkinje-based methodology from anterior segment en face OCT imaging provided, therefore, reliable measurements of IOL tilt and decentration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We report an integrated optical coherence tomography (OCT) and reflectometry system for ophthalmology imaging. The dual-functional device provides a complementary high-resolution tear film evaluation by reflectometry and anterior segment imaging by OCT, offering a more comprehensive anterior segment examination. The imaging measurement capabilities have been demonstrated on a human eye as well as on a model eye. The minimum measured tear film thickness is 0.3 μm with measurement resolution of less than ±0.58% of film thickness yet the OCT anterior segment offers a depth resolution of 7 μm with a 45-nm bandwidth superluminescent light source at 840-nm center wavelength. The integrated system has demonstrated the capability for three-dimensional imaging in the anterior segment of the eye.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We evaluated in ocular hypertension (OHT) and early glaucoma (EOAG) patients the optic nerve head (ONH) blood flow response (RF onh ) to chromatic equiluminant flicker. This stimulus generates neural activity dominated by the parvo-cellular system. Eleven EOAG, 20 OHT patients, and 8 age-matched control subjects were examined. The blood flow (F onh ) at the neuroretinal rim was continuously monitored by laser Doppler flowmetry before, during, and after a 60-s exposure to a 4 Hz, red-green equiluminant flicker stimulus (30 deg field). RF onh was expressed as percentage F onh -change during the last 20 s of flicker relative to baseline F onh . Responses were collected at a number of temporal sites. The highest RF onh value was used for subsequent analysis. As compared to controls, both OHT and EOAG patients showed a decrease (p<0.01 ) in mean RF onh . We conclude that RF onh elicited by chromatic equiluminant flicker is abnormally reduced in OHT and EOAG patients indicating an impairment of the parvo-cellular-mediated vasoactivity. This decrease of vascular response may occur independently of neural activity loss early in the disease process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high-power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
The study aims to investigate the user-preferred color temperature adjustment for smartphone displays by observing the effect of the illuminant’s chromaticity and intensity on the optimal white points preferred by users. For visual examination, subjects evaluated 14 display stimuli presented on the Samsung Galaxy S3 under 19 ambient illuminants. The display stimuli were composed of 14 nuanced whites varying in color temperature from 2900 to 18,900 K. The illuminant conditions varied with combinations of color temperature (2600 to 20,100 K) and illuminance level (30 to 3100 lx) that simulated daily lighting experiences. The subjects were asked to assess the optimal level of the display color temperatures based on their mental representation of the ideal white point. The study observed a positive correlation between the illuminant color temperatures and the optimal display color temperatures (i]r=0.89 , p<0.05 ). However, the range of the color temperature of the smartphone display was much narrower than that of the illuminants. Based on the assessments by 100 subjects, a regression formula was derived to predict the adjustment of user-preferred color temperature under changing illuminant chromaticity. The formula is as follows: Display T cp =6534.75 log (Illuminant T cp )−16304.68 (R 2 =0.87 , p<0.05 )]. Moreover, supporting previous studies on color reproduction, the effect of illuminant chromaticity was relatively weaker under lower illuminance. The results of this experiment could be used as a theoretical basis for designers and manufacturers to adjust user-preferred color temperature for smartphone displays under various illuminant conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We have studied the possibility of improving the performance, simplifying, and reducing the cost of a double-pass system by the use of alternative technologies. The system for correcting the spherical correction has been based on a focusable electro-optical lens, and a recording device based on CMOS technology and a superluminescent diode (SLED) light source have been evaluated separately. The suitability of the CMOS camera has been demonstrated, while the SLED could not break the speckle by itself. The final experimental setup, consisting of a CMOS camera and a laser diode, has been compared with a commercial double-pass system, proving its usefulness for ocular optical quality and scattering measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Twelve participants were tested on a simple virtual object precision placement task while viewing a stereoscopic three-dimensional (S3-D) display. Inclusion criteria included uncorrected or best corrected vision of 20/20 or better in each eye and stereopsis of at least 40 arc sec using the Titmus stereotest. Additionally, binocular function was assessed, including measurements of distant and near phoria (horizontal and vertical) and distant and near horizontal fusion ranges using standard optometric clinical techniques. Before each of six 30 min experimental sessions, measurements of phoria and fusion ranges were repeated using a Keystone View Telebinocular and an S3-D display, respectively. All participants completed experimental sessions in which the task required the precision placement of a virtual object in depth at the same location as a target object. Subjective discomfort was assessed using the simulator sickness questionnaire. Individual placement accuracy in S3-D trials was significantly correlated with several of the binocular screening outcomes: viewers with larger convergent fusion ranges (measured at near distance), larger total fusion ranges (convergent plus divergent ranges, measured at near distance), and/or lower (better) stereoscopic acuity thresholds were more accurate on the placement task. No screening measures were predictive of subjective discomfort, perhaps due to the low levels of discomfort induced.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Image noise originating from a sensor system is often the limiting factor in target acquisition performance, especially when limited by atmospheric transmission or low-light conditions. To accurately predict target acquisition range performance for a wide variety of imaging systems, image degradation introduced by the sensor must be properly combined with the limitations of the human visual system (HVS). This crucial step of incorporating the HVS has been improved and updated within NVESD’s latest imaging system performance model. The new noise model discussed here shows how an imaging system’s noise and blur are combined with the contrast threshold function (CTF) to form the system CTF. Model calibration constants were found by presenting low-contrast sine gratings with additive noise in a two alternative forced choice experiment. One of the principal improvements comes from adding an eye photon noise term allowing the noise CTF to be accurate over a wide range of luminance. The latest HVS noise model is then applied to the targeting task performance metric responsible for predicting system performance from the system CTF. To validate this model, human target acquisition performance was measured from a series of infrared and visible-band noise-limited imaging systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A method is presented for obtaining good images of a sprayed speckle pattern on specimen surfaces at high temperatures, suitable for strain measurement, by digital image correlation (DIC) using plasma spray for speckle preparation in which a bandpass filter, neutral density filters, and a linear polarizing filter are used to reduce intensity and noise in images. This is accomplished by speckle preparation through the use of plasma spray and suppression of black-body radiation through the use of filters. By using plasma spray for speckle preparation and the filters for image acquisition, the method was demonstrated to be capable of providing accurate DIC measurements up to 2600°C. The full-field stretching deformation of the specimen was determined using the DIC technique. Experimental results indicate that the proposed high-temperature DIC method is easy to implement and can be applied to practical, full-field, high-temperature deformation measurements with high accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We present a bitstream decoding processor for entropy decoding of variable length coding–based multiformat videos. Since most of the computational complexity of entropy decoders comes from bitstream accesses and table look-up process, the developed bitstream processing unit (BsPU) has several designated instructions to access bitstreams and to minimize branch operations in the table look-up process. In addition, the instruction for bitstream access has the capability to remove emulation prevention bytes (EPBs) of H.264/AVC without initial delay, repeated memory accesses, and additional buffer. Experimental results show that the proposed method for EPB removal achieves a speed-up of 1.23 times compared to the conventional EPB removal method. In addition, the BsPU achieves speed-ups of 5.6 and 3.5 times in entropy decoding of H.264/AVC and MPEG-4 Visual bitstreams, respectively, compared to an existing processor without designated instructions and a new table mapping algorithm. The BsPU is implemented on a Xilinx Virtex5 LX330 field-programmable gate array. The MPEG-4 Visual (ASP, Level 5) and H.264/AVC (Main Profile, Level 4) are processed using the developed BsPU with a core clock speed of under 250 MHz in real time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A data reuse-based fast subpixel motion estimation (SME) method for high efficiency video coding (HEVC) is proposed. Since SME is one of the most computation-intensive tools in the encoder process, conventional research on SME focused on the reduction of the computational complexity. The applied data-reuse architecture for the design of fast SME substantially reduces computational complexity at the cost of a reasonable increase in memory bandwidth. The core of the proposed data-reuse method is the replacement of redundant computations in SME with the memory access operations of previously computed values. The proposed method was tested in the latest video coding standard, HEVC, with experimental results showing a reduction in operational complexity of ∼64.14% , and a reduction in encoding time of ∼56.13% , compared to the SME in the HEVC reference encoder.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
In transforming original image frames into two-bit representations, the typical two-bit transform (2BT) needs to calculate variances of the local blocks. This calculation of variances inevitably involves multiplication operations and renders the computational complexity of typical 2BT somewhat high. A constrained 2BT (C2BT) for low-complexity motion estimation (ME) is proposed. By exploiting advantages of the typical constrained one-bit transform (C1BT) and typical 2BT, the proposed algorithm significantly reduces the computational complexity of transformation of image frames into two-bit representations. Also, a corresponding matching criterion for C2BT is proposed to enhance the ME accuracy. Experimental results show that the proposed algorithm enhances the ME accuracy by 0.34 and 0.22 dB compared with 2BT-based ME and C1BT-based ME, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Visual inspection for a highly reflective surface is commonly faced with a serious limitation, which is that useful information on geometric construction and textural defects is covered by a parasitic image due to specular highlights. In order to solve the problem, we propose an effective method for removing the parasitic image. Specifically, a digital micromirror device (DMD) camera for programmable imaging is first described. The strength of the optical system is to process scene ray before image formation. Based on the DMD camera, an iterative algorithm of modulated region selection, precise region mapping, and multimodulation provides removal of the parasitic image and reconstruction of a correction image. Finally, experimental results show the performance of the proposed approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We report, to our knowledge, the first operation of a singly-resonant intracavity optical parametric oscillator (OPO) using the nonlinear material zinc germanium phosphate. The broadly tunable OPO uses a 7-W cw thulium fiber laser pump source to produce <100 mW of tunable mid-infrared light at repetition rates up to 30 kHz. The measured tuning range is 5.5 to 10 μm. The compact, low threshold source was used to perform spectroscopy of various substances. In addition, hyperspectral images were taken by combining the system with a scanning mirror pair and infrared photodiode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A stereo approach to resolve the occlusion problem in stereo video sequence is introduced. We define a measure to evaluate the reliability of an initial disparity in combination with a left-right consistency check. An initial matching cost volume is computed with an absolute difference-census measure. In the spatial propagation stage, the outlier with a low reliability value is replaced/updated with the reliable disparity information in the support region. Because previous methods establish correspondence on a per-frame basis, they cannot obtain temporally coherent disparity results over a stereo sequence. In order to overcome the occlusion problem in a dynamic situation, we employ the modified codebook with color, disparity, reliability, array of the matching cost, and final access time in a temporal propagation procedure. Experimental results show that the proposed algorithm with general-purpose computing on graphics processing units (GPGPU) provides better performance when applied to disparity maps of real-time indoor/outdoor scenes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A feature detection method for calibrating multiprojector displays that utilizes a chromatic pattern to avoid the disadvantages of black-and-white features is proposed. Theoretical and experimental analyses implied that our hue-based method was robust to four factors: the ambient light, the non-Lambertian reflection of a display wall, the variation of projectors, and the different positions of cameras. Our method resulted in low rates of misdetection or false detection. Experimental results also indicated that our method was effective to detect weak features. A markerless calibration method was proposed to autoestimate the aspect ratio of the planar display wall and to autocalibrate multiprojectors. Subpixel accuracy was achieved by applying the detected features in the process of geometry calibration of multiprojector displays with embedded processors and cameras.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A denoising method of all-fiber pulsed coherent Doppler LIDAR (CDL) is investigated. The goal is to enhance the signal-to-noise ratio (SNR) in the weak signal regime. Based on differential detection theory, the total noise expression of CDL with a dual-balanced detector is introduced and analyzed. The conclusion is drawn that the total noise can be acquired under the local oscillator laser exposure conditions by reasonable simplification. Using the actual measured data, the ratio of the standard deviation to the mean value of the total noise in each range gate is obtained and is up to approximately 11%. In order to suppress the jitter of the noise, an effective noise modeling by the trend of each range gate is developed. The feasibility of this method is verified by a long set of measured data. The spatial and temporal distribution of wind speed is illustrated with 400 pulses accumulation. Compared to the noise modeling of the tail, the detection range of wind speed using the proposed method can be improved by 35.3%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A two-dimensional (2-D) weighted roll-off local dimming algorithm that eliminates any visible block artifacts caused by the spatial mismatch between a discontinuous panel image and a continuous backlight is described. The proposed scheme enhances the high gray details by means of a roll-off scheme and removes the block artifacts with bilinear weighting of a pixel-compensated panel image. In addition, the threshold scheme is used to resolve overcompensation problems that lead to visible artifacts around the boundaries of dark local blocks. The image quality and the power consumption are evaluated for 40 test images through both simulation and measurement. Compared to 15.56 and 1.45 of a 2-D roll-off method, the maximum and average color difference values of a proposed scheme are reduced to 7.76 and 0.72 in the simulation. For a prototype 40-in. light emitting diode TV, the average power saving over 40 test images is measured as 60.96%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A theoretical model has been developed to analyze the output polarization state of a total internal reflection-based retroreflector as a function of pitch and yaw motions. There are six different beam paths in the retroreflector, and thus output polarization states, for a given pitch or yaw misalignment. This polarization model discusses the electric field changes of the laser beam based on Fresnel equations for phase and polarization change on reflection. Jones matrices are computed based on Snell’s law, Fresnel equations, the solid geometry, and coordinate transformations to obtain a Jones matrix model of the retroreflector for a given misalignment. Modeling results show that there is always a rotation to the input beam’s polarization and there are specific input regions that are not sensitive to pitch motions but are sensitive to yaw motions. Validation of the model is also presented, using both theoretical and experimental results published by Kalibjian in 2004.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We propose an experimental method consisting of a standard Fizeau interferometer with transmission sphere (TS) for the determination of the focal length of microlens array (MLA) by spherical wavefronts. The TS is axially translated to produce a spherical wavefront of different curvatures with respect to the MLA. The align mode provision of the interferometer helps to monitor the tilt of the MLA with respect to the spherical wavefront. The focal length is determined from the measured distance of adjacent image spots for various spherical wavefronts at the focal plane of the MLA. Error analysis and experimental demonstration with an off-the-shelf MLA are addressed here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A rotary inertial navigation system requires higher calibration accuracy of some error parameters owing to rotation. Conventional multiposition and rotation calibration methods are limited, for they do not consider sensors’ actual operating condition. In order to achieve these parameters’ values as closely as possible to their true values in application, their influence on navigation is analyzed, and a relevant new calibration method based on a system’s velocity output during navigation is designed for the vital error parameters, including inertial sensors’ installation errors and the scale factor error of fiber optic gyro. Most importantly, this approach requires no additional devices compared to the conventional method and costs merely several minutes. Experimental results from a real dual-axis rotary fiber optic gyro inertial navigation system demonstrate the practicability and higher precision of the suggested approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A diode-side-pumped actively Q-switched first-Stokes eye-safe laser with a Nd:YAP/YVO 4 crystal is reported. Under the pump power of 250 W, a stable Raman laser at 1525 nm with an average output power of 4.5 W and pulse width of 60 ns at the pulse repetition frequency of 4.5 kHz is achieved. Another laser crystal Nd:YAG is used to carry out the contrast experiment. The output performances of these two lasers are measured and compared. The result reveals that the first-stokes Raman laser generated by the Nd:YAP/YVO 4 crystal has a lower power threshold and higher Raman conversion efficiency because of the large value of the stimulated emission cross section and the fluorescence lifetime at 1342 nm of the Nd: YAP crystal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A model to achieve flat-top distribution of ultraviolet (UV) excimer laser is presented. Reserving the practically lossless superiority in the traditional diffraction approach, the method improves a diffraction grating with a controllable grating period based on the acousto-optic diffraction effect. A theoretical analysis extending the Huygens–Fresnel principle and Gauss Schell model describing a typically partial coherent source of excimer is proposed, so that a fast Fourier transform numerical simulation could be utilized to calculate the optimized Raman–Nath comprehensive parameter of the acousto-optic medium. Such an excimer homogenous technology could be wisely used in UV lithography and micromachining.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We present theoretical, numerical, and experimental analysis of the cause of internal structure in out-of-focus images of point light sources seen in shots taken with camera lenses that incorporate aspheric surfaces. This “bokeh” structure is found to be due to diffraction on the phase grating at the lens exit pupil induced by small-scale undulations (ripples) of aspheric surfaces. We develop a phase-to-intensity transfer function approach which leads to a simple formula for estimating the intensity modulation ratio in the resulting bokeh based on the out-of-focus distance, amplitude, and frequency of surface undulations. Numerical simulations of bokeh image formation are carried out for a parabolic mirror imager and a double Gauss objective. We find that modulation depth in the bokeh structure calculated by light propagation based simulation agrees with theory when the modulation depth is <30% . Bokeh images are shown to be more sensitive to manufacturing artifacts of an aspheric surface than corresponding degradation in the lens modulation transfer function for a sharp focused image. We apply the transfer function approach to the calculation of the bokeh produced by a measured aspheric surface in a built camera lens and find reasonable agreement between the calculated and measured bokeh structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A backlight unit is constructed by laying out a plastic optical fiber (POF) in a curved trench fabricated in a light-guide plate. First, the light leaks out of the POF at curved sections and enters the plate. Next, the light is extracted from the plate by some microstructures fabricated on the surfaces of the plate. Coupled to a laser diode, its optical power can be efficiently and uniformly delivered over a large area via the POF. In this experiment, we fabricated a 10 cm×10 cm×3 mm prototype unit with off-the-shelf components. It becomes see-through when the space around the POF is filled with index-matching oil. One can build an arbitrary-shaped planar light source by tiling multiple cells and connecting them by a POF. The light inside the POF is depleted as it propagates downstream. This can be compensated by decreasing the radii of curvature. Microstructures on the light-guide plate can distort the passage of ambient light. For a see-through unit, we can distribute them sparsely and/or use absorbers. A see-through backlight unit is a relatively unexplored device, and it might pave the way for new applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A vision experiment comparing the brightness of direct current light and pulsed light of red (640 nm) and green (550 nm) colors was conducted. The frequency of the pulsed current is 100 Hz and the duty ratio varies between 10% and 90% with an interval of 10%. The Talbot-Plateau law holds for green light but fails for red color when the duty ratio is smaller than 70%. For red light, the maximum enhancement factor is 1.17, which appears at the condition of 20% duty ratio. The results show that the sensitivity of the human eye on pulsed light changes when the spectrum and duty cycle are different.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Generally, aspheric glass lenses are manufactured using a glass molding press (GMP) method and a tungsten carbide mold core. This study analyzes the thermal deformation that occurs during the GMP process, and the results were applied to compensate an aspheric glass lens. After the compensation process, the form accuracy of aspheric glass lenses improved from ∼3.7 to ∼0.35 μm. The compensated lens complied with the actual specifications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Despite the wide usage of hollow retroreflectors, there is limited literature involving their fabrication techniques and only two documented construction methods could be found. One consists of an adjustable fixture that allows for the independent alignment of each mirror, while the other consists of a modified solid retroreflector that is used as a mandrel. Although both methods were shown to produce hollow retroreflectors with arc second dihedral angle errors, a comparison and analysis of each method could not be found, which makes it difficult to ascertain which method would be better suited to use for precision-aligned retroreflectors. Although epoxy bonding is generally the preferred method to adhere the three mirrors, a relatively new method known as hydroxide-catalysis bonding (HCB) presents several potential advantages over epoxy bonding. HCB has been used to bond several optical components for space-based missions, but has never been applied for construction of hollow retroreflectors. We examine the benefits and limitations of each bonding fixture as well as the present results and analysis of hollow retroreflectors made using both epoxy and HCB techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE® under appropriate processing conditions. However, for IBS of a Zerodur® surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns’ formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We demonstrate a distributed measurement technique to observe temperature changes along pumped Yb-doped fibers. This technique is based on an array of fiber Bragg gratings acting as a temperature sensor line. The Bragg gratings are inscribed directly into the Yb-doped fiber core using high-intensity ultrashort laser pulses and an interferometric setup. We studied the temperature evolution in differently co-doped Yb fibers during optical pumping and identified different effects contributing to the observed temperature increase. We found that preloading of fibers with hydrogen supports the formation of Yb 2+ during UV irradiation and has a large impact on fiber temperature during pumping. The proposed technique can be applied to investigate the homogeneity of pump absorption in active fibers and to support spatially resolved photodarkening measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Rayleigh backscattering induces mode hopping of distributed feedback (DFB) fiber lasers in the sensor array, and the critical length related to Rayleigh backscattering limits the size of DFB fiber laser sensor networking. Based on a three-mirror cavity model, the critical length for a DFB fiber laser is derived. It increases nearly exponentially with the coupling coefficient for the ideal π -shifted DFB fiber lasers. The reflectivity of the sub-fiber Bragg grating at the lasing wavelength is the main factor to resist Rayleigh backscattering for a nonideal DFB fiber laser. The corresponding experiments have been carried out, and the critical length of larger than 150 m was achieved for 42-mm-long DFB fiber lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
An innovative approach for security-enhanced optical stealth transmission in a synchronous digital hierarchy network is proposed and experimentally investigated. The security enhancement is achieved through a signal modulation format, so-called polarization-modulated-code-shift-keying, which is implemented with two superstructured fiber Bragg gratings-based optical-code-division multiple-access encoders and a polarization modulator. The proposed modulation format can provide a constant energy level for both bits 0’s and 1’s, which avoids secure vulnerability of single-stealth-user with on-off-keying modulation before coupling into the host channel and after the cascade of filters. Moreover, a self-made cost-effective gain-switched distributed feedback laser with relatively narrow spectrum is first employed as a stealth optical source, which greatly reduces the system cost and complexity. The stealth signal is recovered and detected asynchronously. The experimental results show high secure performance and robustness against eavesdropping, while keeping a bit error rate below forward error correction limit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane’s tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ∼1500 operating hours) and the lamp’s technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED’s lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A new wavelength division multiplexing (WDM)-based radio over fiber (RoF) system is proposed for optical virtual private network (OVPN) communication between inter-base stations (inter-BSs) or intra-BSs, using four-wave mixing (FWM) in a semiconductor optical amplifier as well as wavelength reflection of fiber Bragg gratings. By establishing inter-BSs and intra-BSs OVPN link of a 60-GHz WDM-RoF system, the private channels for the communication of end users under different BSs of sub-RoFs can be provided. In our scheme, 58 and 60-GHz millimeter waves are used to carry OVPN data and downstream data, respectively. Furthermore, the scalability of the proposed system is improved by the integration of an RoF system, WDM, and FWM. The simulation results successfully verify the feasibility of our proposed scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
TOPICS: Modulation, Radio optics, Hybrid fiber radio, Single mode fibers, Linear filtering, Signal detection, Single sideband modulation, Dispersion, Radio over Fiber, Signal generators
A full-duplex radio over fiber system with optimum optical carrier to sideband ratio (OCSR) of 0 dB and wavelength reuse for uplink are proposed. At the central office, single-sideband modulation with OCSR larger than 0 dB is realized based on optical injection. At the base station, a notch filter with the notch depth corresponding to the OCSR of the transmitted signal is used to achieve the optimum OCSR of 0 dB. The reflected weakly modulated carrier is reused as the carrier for upload signals. A simulation is carried out to verify the proposed system. Results show that the download 60-GHz-RF signal is almost not affected by the fiber chromatic dispersion, and the power penalty after transmission over a 50-km single-mode fiber is negligible in uplink and is only 1.27 dB in downlink.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Mode instability acts as a common feature in single-frequency fiber ring lasers. The mechanism of coherence collapse by mode instability is theoretically analyzed and demonstrated with an unbalanced fiber Michelson interferometer utilizing phase modulation, which is illuminated by a single-frequency erbium-doped fiber ring laser. Multiform mode instability phenomena accompanied with coherence collapse are observed and discussed in detail by tracing the dynamics of the interference fringe visibility. The results show that mode instability would introduce extra phase noises like a false alarm to interferometric fiber optic sensing systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We propose an optical domain pilot-aided carrier phase recovery (PA-CPR) scheme used in a single-carrier Nyquist system. A comprehensive mathematical description of the proposed PA-CPR scheme is presented. Optimal parameters for the system are obtained through optimizations. Furthermore, we propose the two-stage PA-CPR algorithm combinations which use the maximum likelihood or constellation transformation phase estimation as the second stage just after the pilot phase compensation. We also make the evaluation and comparison of the linewidth tolerance performances among the proposed two-stage PA-CPR algorithm combinations and other typical CPR algorithms in a 28-Gbaud Nyquist polarization-division multiplexed (PDM)-16QAM optical communication system. The calculation results show that the proposed two-stage PA-CPR algorithm combinations, which have lower complexities, show better performances than others.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Advantages for sensor applications of long-period gratings (LPGs) in special optical fibers are reported. Two consecutive LPGs separated by 60 to 100 mm interfere to improve the resolution and reduce noise in a highly doped fiber with inner cladding and in a D-shaped fiber. These gratings provide good contrast to increase the resolution for sensing applications, with or without access to the surroundings along the fiber. The mode profiles of the devices were characterized experimentally to gain deeper insight into the improved functionality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
The filtering properties of a continuously tunable single-passband microwave photonic filter based on stimulated Brillouin scattering (SBS) are investigated. The filter utilizes the advantage of combining phase-modulated RF signal and dual-sideband suppressed-carrier pump signal to achieve the SBS-based tunable narrowband filtering. The effects of pump power on the out-of-band rejection (OBR) and 3-dB bandwidth, the optical fiber structure on the resonant sideband, and input RF signal power on the OBR and 3-dB bandwidth are analyzed theoretically and experimentally. The results show that the pump power has the potential of increasing the OBR and tuning 3-dB bandwidth, whereas the RF signal power has nearly no influence on the two parameters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A multilink failures model, i.e., probabilistic-shared risk link group (PSRLG), is adopted to investigate the problem of differentiated quality-of-protection (QoP) provisioning for flexi-grid optical networks. As a metric, service failure probability (SFP) is introduced to exactly examine the feasibility of differentiated QoP schemes, which denotes the failure probability of a connection during transmission. According to different reliability requirements, connection requests are divided into three classes, i.e., class high, class middle, and class low. Then two differentiated QoP provisioning schemes are proposed based on the class division, i.e., intraclass-shared resource scheme (ICSR scheme) and cross-class-shared resource scheme (CCSR scheme). The former allows a connection to share backup resources only with those connections in the same class, whereas the latter enables the connections in different classes to share backup resources. Simulation results show that our proposed schemes could well provide differentiated reliability with PSRLG constraint and achieve a good balance between reliability and resource efficiency. Moreover, the CCSR scheme achieves lower blocking probability, lower resource redundancy, and higher spectrum utilization without sacrificing reliability compared to the ICSR scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
A terahertz (THz)-wave parametric oscillator (TPO) pumped by a stable and single-longitudinal mode Q-switched Nd:YAG laser under various room temperatures is demonstrated. It is based on a cavity TPO architecture allowing stable single-resonance operation and low oscillation threshold. The output results, including the effects of the room temperature on this wavelength-agile TPO with a MgO:LiNbO3 crystal, indicate that the performance of TPO under the lower temperature is better. We obtain a widely tunable THz-wave source in the range 104 to 226 μm via tuning the cavity flexibly under different room temperatures. The peak power of the THz wave reaches 220 mW at the wavelength of 146.2 μm when the room temperature is 20°C. The peak power of the THz wave decreases to 48 mW when the room temperature rises from 20°C to 25°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
One-millimeter-thick Al 1050 sheets were cut using a 2-kW fiber laser operating in continuous-wave (CW) mode. An experimental approach that consisted of fitting the regression models by means of response surface methodology was adopted. The effects of cutting speed, assist gas pressure, and focal position on roughness arithmetic mean value were investigated. The desirability function was applied for the simultaneous optimization of cut quality and operating costs. The full potential of the CW mode high processing speeds and of the better absorptivity of 1-μm laser radiation for highly reflective materials are employed at the same time. Cutting aluminum with fiber laser increases the cutting speed and gives a cut quality comparable with results obtained with CO2 and Nd:YAG lasers that represent the most established laser sources for this application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry–Perot interferometer and extrinsic Fabry–Perot interferometer as temperature and pressure sensing elements, respectively. A CO 2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×10 5Pa and a temperature range from 20°C to 700°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10 −6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
We demonstrate a temperature sensor based on surface plasmon resonances supported by a six-hole microstructured optical fiber (MOF). The air holes of the MOF are coated with a silver layer and filled with a large thermo-optic coefficient liquid mixture (ethanol and chloroform). The use of all six fiber holes and their relatively large size should facilitate the coating of the silver and the filling of the liquid mixture. Temperature variations will induce changes of coupling efficiencies between the core-guided mode and the plasmonic mode, thus leading to different loss spectra that will be recorded. The refractive index of the liquid mixture is close to that of the MOF material, which will enhance the coupling efficiency and the sensitivity. Our numerical results indicate that temperature sensitivity as high as 5.6 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Parallel aligned liquid crystal on silicon (PA-LCoS) displays have found wide acceptance in applications requiring phase-only modulation. Among LCoS devices, and PA-LCoS as a specific case, digital addressing has become a very common technology. In principle, modern digital technology provides some benefits with respect to analog addressing such as reduced interpixel cross-talk, lower power consumption and supply voltage, gray level scale repeatability, high programmability, and noise robustness. However, there are also some degradating issues, such as flicker, which may be enhanced. We analyze the characteristics of the digital pulse width modulated voltage signals in relation to their effect on the optical modulation capabilities of LCoS displays. We apply calibration techniques developed in our laboratory, basically the classical linear polarimeter extended to take into account the existence of flicker. Various digital sequence formats are discussed, focusing the analysis on the variations in the magnitude of the applied voltages across the LC layer. From this analysis, we obtain how to amplify the retardance dynamic range and how to enhance linearity in the device without enhancing flicker and without diminishing the number of available quantization levels. Electrical configurations intended for phase-only and intensity modulation regimes, useful in diffractive optics, are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
This article [Opt. Eng.. 53, (6 ), 061610 (2014)] was originally published on 16 December 2013 with incorrect mathematical symbols in two equations. Equations 12 and 13 originally appeared as below:
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
This article [Opt. Eng.. 51, (8 ), 089001 (2012)] was originally published online on 2 August 2012 with missing references. On p. 5, the paper mentions the “Sheik-Bahae model,” and on p. 6 it mentions the “Cuppo method,” but neither of these methods were cited. References have been added accordingly, and the last 5 references have been renumbered as follows:
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
The introduction of this paper [Opt. Eng.. 52, (9 ), 095103 ( Sep. 2013)] has been revised by the authors to include two additional references and explanatory text. This erratum includes the revised introduction and the updated references. The full published article was updated online to include this new material on 26 June 2014.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.