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Abstract. By correlating bi-Ronchigram images, surface errors without any supposed symmetry are evaluated.
No approximation and interference orders are needed. First, only one experimental bi-Ronchigram (Ronchigram
with a square grid) image was recorded. Second, given a surface parameter set (curvature radius, conic con-
stant, and/or symmetric and asymmetric deformation coefficients), a bi-Ronchigram image is simulated and cor-
related with the bi-Ronchigram experimental image. Third, genetic algorithms are used to find the parameters for
which the correlation coefficient reaches its maximum value. Finally, the parameters of the experimental surface
are estimated. Evaluations of curvature radius, conic constant, and error functions for reflecting surfaces will be
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1 Introduction
In optical shops, experimental and simulated Ronchigrams1,2

are visually compared in order to qualitatively evaluate
reflecting surfaces. On the other hand, to quantitatively
evaluate the aberrations of any asymmetric surface (or wave-
front), two crossed Ronchigrams have to be recorded.3,4 From
each one, a component of the transversal aberration function is
calculated.5–7 After an analytical integration is applied3,4 and
the optical path differences (OPD) function is calculated, it is
possible to record only one pattern (bi-Ronchigram) if a
square grid is used instead of the classical Ronchi ruling.8 In
this latter case, a numerical8 or analytical integration9 can be
applied to estimate the OPD function. To evaluate phase func-
tion from a pattern of fringes,10 the correlation coefficient
between the experimental and simulated interferogram is
maximized by using genetic algorithms. Recently, a similar
procedure has been used to evaluate Ronchigrams.11

What follows in this paper is the description of a pro-
cedure to estimate parameters and error function of any
kind of mirror. By using the experimental setup shown in
Fig. 1, we recorded the experimental bi-Ronchigram image,
which was correlated with several simulated images of bi-
Ronchigrams. Before any bi-Ronchigram was recorded,
the ruling was aligned in order to guarantee the parallelism
between (1) ruling lines and CCD array, (2) the normal of the
CCD and ruling plane normal, and (3) the normal of the ruling
plane and optical axis of the mirror. For each theoretical sur-
face used for simulation, the error function was a different one
until a correlation coefficient was maximized. As a result, the
parameters of the experimental surface were estimated.

In Sec. 2, the problem is stated. In Sec. 3, the algorithm
to simulate bi-Ronchigram images is described. Algorithms
used to normalize experimental bi-Ronchigram images and

to correlate simulated and experimental bi-Ronchigrams are
described in Sec. 4. Experimental results are reported in
Sec. 5. Finally, our conclusions are reported in Sec. 6.

2 Statement of the Problem
Any surface can be described by means of a vector of param-
eters, a (curvature radius, conic constant, symmetric and
asymmetric deformation constants, etc.). The experimental
surface is defined by an unknown experimental vector of
parameters, aex, and the surface used to simulate a bi-
Ronchigram image is defined by its parameters vector,
asi. By correlating the experimental and simulated bi-
Ronchigram images, a correlation coefficient, Cðaex; asiÞ, is
obtained. We used genetic algorithms to find the a�si value for
which the correlation coefficient, Cðaex; a�siÞ, is maximized.
We assume that the best estimator of aex is a�si and then the
experimental surface parameters are evaluated. It is impor-
tant to point out that no symmetry assumption, approxima-
tion, and interference orders are needed to apply this
procedure.

3 Bi-Ronchigram Image Simulations
Figure 2 shows the geometry of the Ronchi test with a square
grid. An incident ray comes from a point source light,
ðα; β; γÞ, to a point, ðx; y; zÞ, on the surface. The reflected
ray crosses12 the square grid plane, z ¼ z0, at the point coor-
dinates ðx0; y0Þ given by

x0 ¼ xþ ðz0 − zÞ

×
�ðx − αÞð1 − z2x þ z2yÞ − 2zx½zyðy − βÞ þ ðγ − zÞ�
ðγ − zÞð1 − z2x − z2yÞ þ 2½zxðx − αÞ þ zyðy − βÞ�

�
;

(1)*Address all correspondence to: Alberto Cordero-Dávila, E-mail: acordero@
fcfm.buap.mx
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y0 ¼ yþ ðz0 − zÞ

×
�ðy − βÞð1 − z2x þ z2yÞ − 2zy½zxðx − αÞ þ ðγ − zÞ�
ðγ − zÞð1 − z2x − z2yÞ þ 2½zxðx − αÞ þ zyðy − βÞ�

�
;

(2)

where zx and zy represent partial derivatives (with respect to
x and y) of the surface sagitta, zðx; yÞ.

The latter is given as the sum of the ideal sagitta,
zid ¼ ðx; yÞ, plus surface error, w, i.e.,

zðx; yÞ ¼ zidðx; yÞ þ wðx; yÞ: (3)

In this application, w is the surface error measured along
the z axis.

After the incident ray with unitary irradiance crosses the
grid, its irradiance, I, can be calculated approximately by

I ¼
�
1þ cosð2πx0∕dÞ

2

��
1þ cosð2πy0∕dÞ

2

�
; (4)

where d is the period of the square grid along the X or Y
direction. Even though Eq. (4) is an approximation, it is,
however, very useful to match the experimental and simu-
lated bi-Ronchigram images.13 The bi-Ronchigram image
is obtained by assigning many values to points ðx; y; zÞ on
the mirror and then calculating Iðx; yÞ.

In order to evaluate the correlation coefficient, the
point coordinates ðx; yÞ where the simulated irradiance is

calculated have to correspond to the point coordinates
where the irradiance of the bi-Ronchigram image is
recorded.

It is important to point out that Eqs. (1)–(3) can be applied
to Hartmann’s test with no changes, i.e., from a mathematical
point of view, there is no difference between calculations
for the Ronchigram and the hartmanngrams since the loca-
tions of the filtering and observation planes depend only on
two parameters. In fact, a common mathematical model
has been established for Ronchi’s and Hartmann’s tests.
Even from the physical point of view, the Ronchigram
and Hartmanngram correspond to virtual and real patterns,
respectively.12

4 Normalization and Correlation Methods Applied
to Bi-Ronchigram Images

4.1 Normalization of Bi-Ronchigram Images

The file of the experimental bi-Ronchigram image is given
by the triad set: (xi, yi, Ii), i ¼ 1;2; : : : NP, where NP is the
number of pixels of the CCD and Ii is the measured irradi-
ance at the pixel center coordinates (xi, yi).

First of all, by applying the least-squares method to data
points of the bi-Ronchigram border, the center and radius of
the bi-Ronchigram image are evaluated.14 And then a new
triad set (xci, yci, IEci), i ¼ 1;2; : : : ; NPC, is evaluated,
where (xci, yci) are the NPC point coordinates with respect
to the center of the experimental bi-Ronchigram image and
within a unitary circle.

Second, the Zernike polynomials are used to normalize
the experimental bi-Ronchigram image,15 see Fig. 3, i.e., to
calculate the set of triads (xECNi, yECNi, IECNi), see Fig. 4,
where IECNi represents the normalized irradiances at the
i’th point. In Fig. 5, the irradiance plots are shown along
the x axis of the bi-Ronchigram before and after the normali-
zation algorithm had been applied.

4.2 Correlating Simulated and Experimental Bi-
Ronchigram Images

As it has been pointed out, by using Eqs. (1)–(4), at the point
coordinates (xECNi, yECNi), the irradiances, ISi, of the simu-
lated bi-Ronchigram are calculated. Then the triad sets
(xECNi, yECNi, ISi) are obtained.

For simulations of bi-Ronchigram images, the following
two functions will be used. The sagitta function

Fig. 1 (a) Experimental setup of Ronchi test and (b) CCD camera, Ronchi tester (λ ¼ 660 nm) and
square grid.

Fig. 2 Geometry of Ronchi test with square grid.
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f ¼ cρ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðkþ 1Þc2ρ2

p ; (5)

where ρ2 ¼ x2 þ y2. And the second equation is the known
Kingslake polynomial

g ¼ txyþ tyxþ dfðx2 þ y2Þ þ asðx2 þ 3y2Þ
þ coyðx2 þ y2Þ þ spðx2 þ y2Þ2: (6)

For the examples of Secs. 5.1 and 5.2, zid ¼ f and w ¼ g,
i.e., the ideal surface is a conic mirror and the error function
is described by the Kingslake function.

However, for the examples of Sec. 5.3, zid ¼ 0 and
w ¼ f. This means that the ideal surface is a plane one
and the error function is a conic mirror, i.e., we want to know
the curvature and conic constant of the mirror under test.

Digital image correlation then becomes a task of compar-
ing the sets of triads (xECNi, yECNi, ISi) and (xECNi, yECNi,
ICNi). The typical correlation function that measures how
well a set matches is

C ¼
PNpc

i¼1 ½ðIECNi − ĪECNÞðISNi − ĪSNÞ�hPNpc
i¼1 ðIECNi − ĪECNÞ2

PNpc
i¼1 ðISNi − ĪSNÞ2

i
1∕2 ; (7)

where ĪSN and ĪECN represent the mean values of ISNi and
IECNi sets, respectively.

5 Experimental Results
Figure 3 shows the experimental bi-Ronchigram obtained for
a spherical mirror (under test) of 14 cm diameter and 60.50�
0.05 cm curvature radius, r. The latter was measured by
locating the Ronchi ruling position for which the field on
the mirror is either totally bright or dark.4 The (on axis)
point source and the square grid of 42 holes∕in: (i.e., a
period of 0.61 mm) were located at a distance 58.8 cm away
from the mirror vertex.

Two different ideal surfaces were assumed: a spherical
(Sec. 5.1) and a parabolic (Sec. 5.2) surface.

Fig. 3 Experimental bi-Ronchigram image for mirror of 14 cm diam-
eter and 60.5 cm curvature radius.

Fig. 4 Normalized experimental bi-Ronchigram image for mirror of
14 cm diameter and 60.5 cm curvature radius.

Fig. 5 Bi-Ronchigram irradiance plots, along the x axis, (a) before and (b) after the normalization algo-
rithm was applied.
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5.1 Spherical Mirror as Ideal Surface

We substituted k ¼ 0.0 and c ¼ 1∕60.5 cm into Eq. (5), and,
by using genetic algorithms, calculated the coefficients of
Eq. (6) for which the correlation coefficient of Eq. (7)
reached its maximum value. We found that the correlation
coefficient is maximized to a value of 0.9264 if coefficients
are given by tx ¼ 3.73� 0.05λ, ty ¼ 0.56� 0.05λ, df¼
0.31�0.05λ, sp¼0.00025�0.00005λ, c0¼0.0000�0.0025λ,
and as ¼ 0.03720� 0.00025λ.

The tilt coefficients are different from zero since the dot of
that zero order is decentered along the X and Y directions, as
can be seen in Fig. 3. The spherical aberration value indicates
a symmetrical error value of 3.6 × 10−5 cm at the edge of the
mirror. Finally, the astigmatic coefficient indicates that the
mirror is not an axisymmetric surface. This can be seen from
the experimental bi-Ronchigram shown in Fig. 3. The period
of the dots along the X direction (13 dots) is different from
the period along the Y direction (12 dots). The reproduced bi-
Ronchigram is shown in Fig. 6.

It is important to draw attention to the square dots of the
simulated bi-Ronchigram (see Fig. 6), compared to the cir-
cular dots of the experimental bi-Ronchigram (see Fig. 3).

5.2 Parabolic Mirror as Ideal Surface

We substituted k ¼ −1.0 and c ¼ 1∕60.5 cm into Eq. (5). In
this case, a maximal correlation coefficient of 0.9261 was
reached for the coefficients tx ¼ 3.71� 0.05λ, ty ¼ 0.56�
0.05λ, df ¼ 0.32� 0.05λ, sp ¼ 0.01148� 0.00005λ, c0 ¼
0.0000� 0.0025λ, and as ¼ 0.03700� 0.00025λ. As can
be seen, all of the coefficients are reproduced with the excep-
tion of the spherical aberration coefficient. This result was to
be expected since the ideal surface is now a parabolic mirror.
In addition, from the spherical aberration coefficient, a sur-
face error of 1.40 × 10−3 cm at the border of the mirror can
be calculated. This result can be compared with the sagittae
difference between the spherical and parabolic mirrors at
their border (1.36 × 10−3 cm).

The uncertainties written after each estimated coefficients
correspond to the interval of seeking the maximum value of
the correlation coefficient.

Fig. 6 Reproduced bi-Ronchigram from an ideal spherical mirror.

Fig. 7 Experimental bi-Ronchigram of a parabolic mirror.

Fig. 8 (a) An experimental bi-Ronchigram image for an elliptical mirror and (b) experimental bi-
Ronchigram irradiance along x axis.
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5.3 Evaluation of Curvature Radius and Conic
Constant of Mirrors

Two mirrors of 20 and 14 cm diameters were tested in order
to estimate, using our method, their curvature, c, and conic
constant, k.

For the 20 cm mirror diameter, the point source and the
squared grid (42 holes∕in:) were located at a distance
157.7 cm away from the mirror’s vertex. The experimental
bi-Ronchigram obtained is shown in Fig. 7. After our algo-
rithm was applied, we obtained r ¼ 160.171 cm and k ¼
−0.981 for the paraxial curvature radius and the conic
constant, respectively. The maximum value obtained for the
correlation coefficient was 0.8113. The technician reported a
paraxial curvature radius of 160.10� 0.05 cm and a conic
constant k ¼ −1.0 (a parabolic mirror). As can be seen,
the difference between nominal values and those estimated
with our method is 2% of the conic constant and 0.05% of
the paraxial curvature radius.

The second mirror with a 14 cm diameter with an internal
hole of 2.7 cm diameter was tested with a squared grid of
33.02 holes∕in: located 57.2 cm away from the mirror’s ver-
tex. The experimental bi-Ronchigram obtained is shown in
Fig. 8(a). In Fig. 8(b), a plot of the irradiance along the x axis
is shown. We applied our algorithm and we estimated the
values of r ¼ 60.04 cm and k ¼ −0.703 for the paraxial
curvature radius and conic constant, respectively. The
obtained maximum correlation coefficient was 0.7570. The
technician in Ref. 16 reported a paraxial curvature radius of
60.10� 0.05 cm and a conic constant k ¼ −0.72 with our
elliptical mirror. As can be seen, the difference between
nominal values and those estimated with our method is 2.4%
of the conic constant and 0.1% of the paraxial curvature
radius.

6 Conclusions
A method to evaluate surface parameters and errors of sur-
faces, based on the correlation of bi-Ronchigram images,
was presented. For this method, the experimental setup of
the Ronchi test was used, and only a square grid instead
of a Ronchi ruling was used. Thus, it is not necessary to
purchase any extra hardware to implement this procedure.
Added to this, no rotator is required to record two
Ronchigrams. The required software is the one used for
(1) interferograms normalization and (2) image correlations.
It is important to point out that no symmetry assumption is
required to apply this method.
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