8 March 2016 Strain monitoring of bismaleimide composites using embedded microcavity sensor
Author Affiliations +
A type of extrinsic Fabry–Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
Amardeep Kaur, Amardeep Kaur, Sudharshan Anandan, Sudharshan Anandan, Lei Yuan, Lei Yuan, Steve E. Watkins, Steve E. Watkins, K. Chandrashekhara, K. Chandrashekhara, Hai Xiao, Hai Xiao, Nam Phan, Nam Phan, } "Strain monitoring of bismaleimide composites using embedded microcavity sensor," Optical Engineering 55(3), 037102 (8 March 2016). https://doi.org/10.1117/1.OE.55.3.037102 . Submission:

Back to Top