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Abstract. We define the displacement, smear, and jitter components of image motion and derive the two-dimen-
sional statistical image motion optical transfer function (OTF) corresponding to each component. These stat-
istical OTFs are parameterized by means and covariances, which are computed most conveniently from a
weighted power spectrum of the line-of-sight motion. Another feature of these results is the realization that
all temporal and spatial frequencies contribute to each statistical OTF and that one can determine the frequen-
cies that contribute most significantly to each OTF. Additionally, optical system design is typically based upon the
properties of an individual image. In a comprehensive optical system design, the statistical properties of an
ensemble of images should also be considered. For individual images subject to a constant but possibly
unknown smear length, the OTF is a sinc function. This is called a deterministic smear OTF because it
does not describe the smear statistically. The statistical smear OTF describes the average smear OTF for
an ensemble of images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.55.6.063108]
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1 Introduction
The point spread function (PSF) is the image of a point
source of light. The PSF is shaped by various effects, includ-
ing the spatial frequency response of the optics and image
motion due to line-of-sight (LOS) motion. The optical trans-
fer function (OTF) of an isoplanatic (shift invariant) optical
system is the two-dimensional (2-D) spatial Fourier trans-
form (FT) of the PSF for noncoherent (incoherent) optical
radiation, and the modulation transfer Function (MTF) is
its magnitude.1,2 Prominent uses for the OTF of an optical
system include predicting performance from simulation
information, specifying performance tolerances and require-
ments for an optical system, and analyzing performance from
test data.

Optical systems operating in real-world scenarios are sub-
ject to dynamic environments. The principle dynamic effect
is image motion during the exposure interval in which
electromagnetic energy is collected by the detector. Image
motion reduces the system OTF, particularly at higher spatial
frequencies, and therefore reduces image quality. Image
motion is potentially a limiting factor in the imaging perfor-
mance of an optical system. The image motion treated herein
is the relative LOS pointing motion projected onto the two
spatial dimensions of a focal plane. The relative pointing
motion is due to camera attitude error, deliberate attitude
motion, translational camera motion, and translational target
motion. Other sources of image motion, distortion, and vary-
ing target aspect, for example, are not considered. The vari-
ous types and sources of image motion are illustrated and
explained in detail in Ref. 3 (Ch. 8, pp. 103–115). The effect

of image motion on the performance of an optical system is
measured by an image motion OTF. In addition to its con-
tribution to the system OTF described above, the image
motion OTF is also needed to calculate an inverse filter
for image compensation. In this work, we consider systems
where all elements of the image sensor are exposed simulta-
neously. Line scan detectors, time delay integration (TDI),
and moving shutter systems are not considered.

1.1 Objective

The purpose of this paper is to derive statistical image motion
OTFs in two dimensions of spatial frequency for image dis-
placement, smear, and jitter, and to provide a methodology to
compute the parameters of the OTFs from LOS pointing
motion of the optical system. Conventional analysis of the
smear OTF (a sinc function) assumes some particular value
for smear, so we call it a deterministic smear OTF. In general,
image smear has a mean value plus a random variation from
one image to another. In some optical systems, the random
variation dominates the mean. The statistical smear OTF
measures the average performance of an ensemble of images
subject to nonzero-mean Gaussian random smear. It is best
visualized as a surface over the two dimensions of spatial
frequency. The derivations yield the familiar Gaussian jitter
OTF, which is also a statistical OTF, and a displacement
OTF, which measures image offset due to image motion.
The parameters of the OTFs are means and covariances com-
puted from the power spectrum of the pointing motion
weighted by frequency domain weighting functions. Various
types of pointing metrics are defined. The OTFs and the
method to compute their parameters are intended to support
integrated modeling, multidisciplinary analysis, and simula-
tion of electro-optical systems.
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1.2 Historical Literature Survey

Various authors3–18 have analyzed the effect of image motion
on the performance of optical systems. The OTF has been
studied analytically and numerically for specific motions
such as uniform linear motion, accelerated motion, low-
frequency sinusoidal motion with period greater than the
exposure interval and with various initial phase angles,
high-frequency sinusoidal motion with period less than
the exposure interval, and white Gaussian random motion
(jitter). The image motion OTF has been studied extensively
for deterministic motion. Except for the jitter OTF, statistical
treatment of image motion OTF has been limited to numeri-
cal evaluation.

The image motion MTF derived in Refs. 4 and 5 for high-
frequency sinusoidal motion, assuming an integral number
of cycles during an exposure or many cycles so that frac-
tional cycle is negligible, is shown to be a zero-order
Bessel function J0ð2πξDÞ of the spatial frequency ξ and
amplitude D of the sinusoid. The low-frequency image
motion MTF in Ref. 5 is simply the image motion MTF for
uniform linear motion with the assumption that the image
exposure time is much shorter than the period of the sinus-
oid. The image motion OTF for uniform linear motion and
Gaussian random motion are also given in Ref. 4. The OTF
for uniform linear motion and for sinusoidal motion, with
zero to two cycles in the exposure interval, including frac-
tional cycles, and for various initial phase angles, are ana-
lyzed in Ref. 7. The image motion OTF for quadratic
motion was first analyzed in Ref. 6. The image motion OTF
for linear plus quadratic (accelerated) motion is derived in
Ref. 8, where it is shown that in the presence of accelerated
motion the MTF is nonzero at any spatial frequency but
approaches the sinc function as the smear due to acceleration
becomes small compared with the smear due to the initial
velocity. The MTF for a fractional-cycle sinusoid at a par-
ticular initial phase angle shown in Ref. 7 is similar to the
MTF for accelerated motion in Ref. 8. This is not surprising,
since a short segment of a sinusoid can be approximated as a
quadratic. Image degradation due to various types of image
motion is summarized in Ref. 3 (Ch. 8, pp. 115–124). A
“lucky shot” probability model is derived in Ref. 10 and con-
firmed experimentally in Ref. 11 to predict how many inde-
pendent exposures are needed, with a given probability, to
obtain at least one image with a smear less than a given
length. This result is important to compute the probability
of target acquisition. A numerical method to compute the
MTF from arbitrary motion data is presented in Ref. 12,
and MTFs are computed numerically for linear motion and
for high- and low-frequency sinusoidal motion. Average
MTFs for low-frequency sinusoidal motion with random ini-
tial phase (relative to the start of the exposure) and for low-
frequency motion with a range of amplitudes are also com-
puted in Ref. 12. The OTF for sinusoidal image motion is
computed in Ref. 13 by first obtaining a line spread function
(LSF) from a histogram (probability density function) of the
image motion data and then computing the OTF by a fast
Fourier transform (FFT) of the LSF. The numerically com-
puted OTF due to sinusoidal image motion is studied in
greater detail and confirmed experimentally using motion
sensor data in Ref. 13. The numerically computed OTF for
accelerated motion is also analyzed in Refs. 13 and 14. The
image motion analyses in Refs. 10–14 are summarized in

Ref. 15 (Ch. 14). An image motion MTF is derived in Ref. 16
by using moments of the motion data. There is no assump-
tion about the type of motion or about its probability density.
Results show that a large number of moments are typically
required to achieve acceptable numerical accuracy, and the
number of moments required depends on the data. A deter-
ministic image motion MTF for a time-delay-integration
(TDI) detector subject to uniform linear motion and a stat-
istical (jitter) image motion MTF are derived in Ref. 17. The
image motion MTF for a TDI line-scan detector and uniform
linear motion was derived and analyzed via simulation in
Ref. 18.

In many systems, the image motion is more accurately
represented by a power spectral density (PSD) spread over
a range of frequencies rather than a single vibrational fre-
quency. Image motion is defined in Refs. 19 and 20 as a dis-
placement plus jitter, and the variances of the displacement
and jitter are computed from the PSD of the image motion
weighted by temporal-frequency domain weighting func-
tions for displacement and jitter. The computation of covari-
ance matrices in the present work follows that of Refs. 19
and 20. The jitter MTF given in Refs. 19 and 20 is the
same as in Ref. 17. In previous work by the first author21,22

the terms “stability” and “jitter” are defined and (point-to-
point) stability and windowed stability are introduced as
measures of image stability over multiple images. A standard
adopted by the National Geospatial Intelligence Agency for
spatial data accuracy23 defines a point-to-point stability met-
ric and an algorithm to compute it, typically for line-scan
data. This metric can be computed more efficiently by our
method (Sec. 4.1). Windowed stability measures the change
in displacement from one image to another and is useful for
image registration and target tracking.

1.3 Approach

This work extends results24 for LOS motion in one spatial
dimension to two spatial dimensions and removes the
assumption of zero-mean smear rate (and zero-mean smear).
We first define the displacement, mean smear rate, and jitter
components of image motion over the exposure interval and
derive expressions for these as a function of the pointing
motion. The mean smear is the mean smear rate times the
exposure time. We then derive from first principles the gen-
eral image motion OTF as a function of the pointing motion.
The general image motion OTF is written in terms of dis-
placement, smear, and jitter, which is shown to be separable
in these components of pointing motion. Taking expectations
and time averages yields the statistical image motion OTFs.
The OTFs are parameterized by means and covariances,
which are computed from the power spectrum of the pointing
motion weighted by frequency domain weighting functions.
The frequency domain weighting functions are a direct result
of the definitions of the displacement, mean smear rate, and
jitter. A notable result is that the statistical smear OTF cannot
be written as the product of one-dimensional (1-D) OTFs,
unlike the deterministic smear OTF and the Gaussian jit-
ter OTF.

1.4 Organization

In Sec. 2, the components of the pointing motion (displace-
ment, smear, and jitter) are defined and expressions for these
components in terms of the pointing motion are derived. In
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Sec. 3, we derive the general image motion OTF and derive
expressions for the displacement, statistical smear, and jitter
OTFs. The statistical smear OTF is characterized in Sec. 3.2.
The statistical smear LSF (1-D PSF) is derived in Sec. 3.3.
The OTFs and LSF are summarized in Table 1 in Sec. 3.3. In
Sec. 4 and in Appendices A–H, equations for the mean and
covariance of the components of the pointing motion are
derived based on the power spectrum of the pointing
motion. The lengthy derivations of the weighting functions
are relegated to the Appendices but summarized in Table 2
in Sec. 4. Weighting functions used to compute the various
covariance matrices are discussed in Sec. 4.1. The compu-
tation of the power spectrum is presented in Sec. 4.2,
and a method for simulating and analyzing the pointing
motion in an imaging vehicle or platform is discussed in
Sec. 4.4.

2 Pointing Motion Model
Image motion is due to the relative LOS motion of the cam-
era and the observed object. The relative LOS motion is
caused by the relative translational and rotational motion
of the camera and the observed object. Image motion due
to changes in aspect of the object is not considered here.
The image motion pðtÞ can be modeled by

EQ-TARGET;temp:intralink-;e001;63;487pðtÞ ¼
�
xðtÞ
yðtÞ

�
¼ cðX; θÞ; (1)

where cðX; θÞ is a camera model parameterized by the rel-
ative translation X and relative attitude θ. The relative atti-
tude here is a small-angle rotation vector but could be
represented by a quaternion, direction cosine matrix, Euler
angles, or other parameterization. Relative pointing motion
and image motion are synonymous, with image motion being
interior to the camera and relative pointing motion being
exterior to the camera.

Figure 1 shows image motion comprising displacement,
smear, and jitter. Displacement is the average image offset
over the exposure interval of length T. Smear is due to a lin-
ear motion over the interval and is equal to T times the smear
rate, where the smear rate is the average slope of the image
motion over the exposure interval. Jitter is the residual
motion after displacement and smear are removed from
the image motion. Smear results in a streaked image and jit-
ter causes an image to be blurred.

The image exposure interval of length T centered at time
t0 is

EQ-TARGET;temp:intralink-;sec2;326;730Iðt0Þ ¼ ½t0 − T∕2; t0 þ T∕2�:

The image motion pðtÞ over the exposure interval is

EQ-TARGET;temp:intralink-;e002;326;688pðtÞ ¼ p̄ðt0Þ þ ðt − t0Þv̄ðt0Þ þψðtÞ; t ∈ Iðt0Þ; (2)

where p̄ðt0Þ is the image displacement over Iðt0Þ, v̄ðt0Þ is the
uniform smear rate (the average rate) over Iðt0Þ, and ψðtÞ is
the jitter motion in the interval Iðt0Þ. For convenience, let
α ¼ t − t0 and write Eq. (2) as

EQ-TARGET;temp:intralink-;e003;326;613pðt0þαÞ ¼ p̄ðt0Þþαv̄ðt0Þþψðt0þαÞ; α∈ ½−T∕2;T∕2�:
(3)

The jitter over Iðt0Þ is obtained from Eq. (3) as

EQ-TARGET;temp:intralink-;e004;326;558ψðt0þ αÞ ¼ pðt0þαÞ− p̄ðt0Þ−αv̄ðt0Þ; α∈ ½−T∕2;T∕2�:
(4)

We shall compute the displacement and smear rate from a
least-squares fit of p̄ðt0Þ and v̄ðt0Þ to the pointing motion
pðtÞ over the interval Iðt0Þ. The jitter motion is then the
least-squares residual. The best fit minimizes the mean
square jitter
EQ-TARGET;temp:intralink-;e005;326;459

Jðt0Þ ¼
1

T

Z
T∕2

−T∕2
jψðt0 þ αÞj2 dα

¼ 1

T

Z
T∕2

−T∕2
jpðt0 þ αÞ − p̄ðt0Þ − αv̄ðt0Þj2 dα; (5)

where Jðt0Þ is the mean square jitter in the interval Iðt0Þ.
Differentiation of J with respect to the displacement p̄

gives

EQ-TARGET;temp:intralink-;e006;326;352

∂J
∂p̄T

¼ 1

T

Z
T∕2

−T∕2
−2½pðt0 þ αÞ − p̄ðt0Þ − αv̄ðt0Þ� dα: (6)

Setting this partial derivative to zero yields
EQ-TARGET;temp:intralink-;e007;326;297Z

T∕2

−T∕2
pðt0 þ αÞ dα ¼

Z
T∕2

−T∕2
½p̄ðt0Þ þ αv̄ðt0Þ� dα

¼ Tp̄ðt0Þ: (7)

The displacement is thus given by

EQ-TARGET;temp:intralink-;e008;326;232p̄ðt0Þ ¼
1

T

Z
T∕2

−T∕2
pðt0 þ αÞ dα: (8)

Differentiation of J with respect to the smear rate v̄ gives

EQ-TARGET;temp:intralink-;e009;326;181

∂J
∂v̄T

¼ 1

T

Z
T∕2

−T∕2
−2α½pðt0 þ αÞ − p̄ðt0Þ − αv̄ðt0Þ� dα: (9)

Setting this partial derivative to zero yields
EQ-TARGET;temp:intralink-;e010;326;125Z

T∕2

−T∕2
αpðt0 þ αÞ dα ¼

Z
T∕2

−T∕2
½αp̄ðt0Þ þ α2v̄ðt0Þ� dα

¼ T3

12
v̄ðt0Þ: (10)
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Fig. 1 Illustration of image motion comprising displacement, smear,
and jitter.
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The smear rate is thus given by

EQ-TARGET;temp:intralink-;e011;63;741v̄ðt0Þ ¼
12

T3

Z
T∕2

−T∕2
αpðt0 þ αÞ dα: (11)

Smear, rather than smear rate, is the observable to which
optical system performance is traditionally linked. The
smear length s̄ðt0Þ is the linear change in the pointing
over the interval Iðt0Þ and is given by

EQ-TARGET;temp:intralink-;e012;63;658s̄ðt0Þ ¼ Tv̄ðt0Þ: (12)

We assume that p̄ðt0Þ and v̄ðt0Þ are Gaussian and wide
sense stationary with expected value means

EQ-TARGET;temp:intralink-;e013;63;605Efp̄ðt0Þg ¼ μ; (13)

EQ-TARGET;temp:intralink-;e014;63;575Efv̄ðt0Þg ¼ ρ; (14)

and covariances ΣD and ΣR, respectively. The mean smear
due to the uniform smear rate is

EQ-TARGET;temp:intralink-;e015;63;527Efs̄ðt0Þg ¼ s ¼ Tρ; (15)

with covariance

EQ-TARGET;temp:intralink-;e016;63;485ΣS ¼ T2ΣR: (16)

We assume also that the jitter motion ψðtÞ ¼ ψðt0 þ αÞ is
Gaussian. The jitter is zero mean when the data fits the
model Eq. (2) at each t0:

EQ-TARGET;temp:intralink-;e017;63;425Efψðt0 þ αÞg ¼ 0: (17)

The mean-square jitter over the interval Iðt0Þ is given by

EQ-TARGET;temp:intralink-;e018;63;383Jðt0Þ ¼
1

T

Z
T∕2

−T∕2
½ψðt0 þ αÞ�½ψðt0 þ αÞ�T dα: (18)

This is similar to the scalar average square jitter in Eq. (5).
The jitter covariance is

EQ-TARGET;temp:intralink-;e019;63;316ΣJ ¼ EfJðt0Þg: (19)

Formulas to compute ΣD, ΣR, ΣS, and ΣJ from the power
spectrum of the pointing motion pðtÞ are summarized in
Table 2 in Sec. 4. These covariance matrices are used in
the formulas in the previous section to compute the smear
and jitter OTFs.

3 Image Motion Optical Transfer Function
The noncoherent (incoherent) imaging of an isoplanatic
(shift invariant) electro-optical system is the product of
the Fourier transform of the point spread function of the opti-
cal system and the Fourier transform of the object geomet-
rically projected onto the detector plane. The imaging
process in the Fourier transform domain is

EQ-TARGET;temp:intralink-;e020;63;141FTimageðξÞ ¼ FTobjectðξÞOTFsystemðξÞ; (20)

where ξ ¼ �
ξx ξy

�
T is the 2-D spatial frequency. The OTF

of an optical system is the product of the OTF of the image
motion, the OTF of the optical diffraction (aperture, wave-
front, and so on.), the OTF of the detector, the OTF of

the atmosphere, and any other effects that may be present.
A typical system OTF is thus given by
EQ-TARGET;temp:intralink-;e021;326;730

OTFsystemðξÞ ¼ OTFatmosphereðξÞOTFopticsðξÞ
· OTFmotionðξÞOTFdetectorðξÞ: (21)

In this work we are concerned only with the effect of image
motion on the system OTF.

The irradiance Ioðx; tÞ of a still image is a function of the
spatial location x in the image. The average irradiance at x
over an exposure of duration T seconds centered at time t0 is

EQ-TARGET;temp:intralink-;e022;326;625goðxÞ ¼
1

T

Z
t0þT∕2

t0−T∕2
Ioðx; tÞ dt: (22)

We assume that the irradiance of a still image is constant with
time so that Ioðx; tÞ ¼ IoðxÞ, and so we have

EQ-TARGET;temp:intralink-;e023;326;560goðxÞ ¼ IoðxÞ: (23)

The 2-D Fourier transform of goðxÞ is

EQ-TARGET;temp:intralink-;e024;326;518GoðξÞ ¼
Z

∞

−∞
goðxÞe−i2πξTx dx: (24)

The irradiance of the image subject to image motion pðtÞ
is Iðx; tÞ ¼ Io½x − pðtÞ�, and the average irradiance over the
exposure is
EQ-TARGET;temp:intralink-;e025;326;442

gðxÞ ¼ 1

T

Z
t0þT∕2

t0−T∕2
Iðx; tÞ dt

¼ 1

T

Z
t0þT∕2

t0−T∕2
Io½x − pðtÞ� dt: (25)

The 2-D Fourier transform of gðxÞ is
EQ-TARGET;temp:intralink-;e026;326;361

GðξÞ ¼
Z

∞

−∞
gðxÞe−i2πξTx dx

¼
Z

∞

−∞

1

T

Z
T∕2

−T∕2
Io½x − pðtÞ� dte−i2πξTx dx: (26)

Let z ¼ x − pðtÞ. Then x ¼ zþ pðtÞ and dx ¼ dz. Substitute
these into Eq. (26) to get
EQ-TARGET;temp:intralink-;e027;326;267

GðξÞ ¼
Z

∞

−∞

1

T

Z
t0þT∕2

t0−T∕2
IoðzÞe−i2πξT ½zþpðtÞ� dz dt

¼
Z

∞

−∞

1

T

Z
t0þT∕2

t0−T∕2
IoðzÞe−i2πξTze−i2πξTpðtÞ dz dt

¼
Z

∞

−∞
goðzÞe−i2πξTz dz

1

T

Z
t0þT∕2

t0−T∕2
e−i2πξ

TpðtÞ dt

¼ GoðξÞKðξ; t0Þ: (27)

The term Kðξ; t0Þ is the general single image motion OTF for
the exposure interval centered at t0:

EQ-TARGET;temp:intralink-;e028;326;126Kðξ; t0Þ ¼
1

T

Z
t0þT∕2

t0−T∕2
e−i2πξ

TpðtÞ dt: (28)

It will be convenient to substitute t ¼ t0 þ α and dt ¼ dα
into Eq. (28) to obtain
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EQ-TARGET;temp:intralink-;e029;63;752Kðξ; t0Þ ¼
1

T

Z
T∕2

−T∕2
e−i2πξ

Tpðt0þαÞ dα: (29)

This single image motion OTF depends on the image motion
pðtÞ during the exposure interval centered at time t0.

3.1 Statistical Image Motion Optical Transfer
Function

An analytical expression for the statistical image motion
OTF is derived in this section. The statistical image motion
OTF is the expected value of the single image motion OTF in
Eq. (29):

EQ-TARGET;temp:intralink-;e030;63;613

OTFmotionðξÞ ¼ EfKðξ; t0Þg

¼ 1

T

Z
T∕2

−T∕2
Efe−i2πξTpðt0þαÞg dα: (30)

The integrand in Eq. (30) is

EQ-TARGET;temp:intralink-;e031;63;540ĤðξÞ ¼ Efe−i2πξTpðt0þαÞg: (31)

Substitute for pðt0 þ αÞ from Eq. (3) into Eq. (31) and factor
the exponential:

EQ-TARGET;temp:intralink-;e032;63;485

ĤðξÞ ¼ Efe−i2πξT ½p̄ðt0Þþv̄ðt0ÞαþψðtÞ�g
¼ Efe−i2πξT p̄ðt0Þe−i2πξT v̄ðt0Þαe−i2πξTψðtÞg: (32)

It is shown in Appendix D that p̄ðt0Þ and v̄ðt0Þ are indepen-
dent random variables in each interval Iðt0Þ, and are inde-
pendent of the least-squares residual ψðt0 þ αÞ ¼ ψðtÞ so
we have for t ∈ Iðt0Þ and α ∈ ½−T∕2; T∕2�,
EQ-TARGET;temp:intralink-;e033;63;389

ĤðξÞ ¼ Efe−i2πξT p̄ðt0ÞgEfe−i2πξT v̄ðt0ÞαgEfe−i2πξTψðtÞg
¼ OTFDðξÞOTFSðξ; αÞOTFJðξÞ; (33)

where OTFDðξÞ is the displacement OTF, OTFSðξ; αÞ is the
smear OTF, and OTFJðξÞ is the jitter OTF. The dependence
of OTFSðξ; αÞ on α will be removed by integration over α in
Eq. (30) so that

EQ-TARGET;temp:intralink-;e034;63;294OTFmotionðξÞ ¼ OTFDðξÞOTFSðξÞOTFJðξÞ: (34)

3.1.1 Displacement optical transfer function

The displacement of an image is represented in the OTF by a
constant phase shift. For any given exposure centered at time
t0, the displacement p̄ðt0Þ is a random constant during the
exposure interval. Therefore we take the expectation in
Eq. (33) to obtain

EQ-TARGET;temp:intralink-;e035;63;177OTFDðξÞ ¼ e−i2πξ
T p̄ðt0Þ: (35)

An image displacement is merely a shift in position of the
image in the focal plane, and so the displacement MTF is
unity, since MTFDðξÞ ¼ jOTFDðξÞj ¼ 1.

3.1.2 Smear optical transfer function

For a Gaussian random smear rate v̄ðt0Þ with mean ρ
and covariance ΣR, the second term in Eq. (33) is the char-
acteristic function associated with the Gaussian density of
v̄ðt0Þ, so we have [Ref. 25 (p. 115)],
EQ-TARGET;temp:intralink-;e036;326;693

OTFSðξ; αÞ ¼ Efe−i2πξT v̄ðt0Þαg (36)

EQ-TARGET;temp:intralink-;e037;326;663 ¼ expð−2π2ξTΣRξα2 − i2πξTραÞ: (37)

The dependence on α is removed by taking a time average
over the exposure interval, which yields the statistical smear
OTF,
EQ-TARGET;temp:intralink-;e038;326;606

OTFSðξÞ¼
1

T

Z
T∕2

−T∕2
expð−2π2ξTΣRξα2− i2πξTραÞdα; (38)

EQ-TARGET;temp:intralink-;e039;326;568

¼
ffiffiffi
π

p
2q

expð−r2ÞRe½erfzðqþ irÞ�; (39)

where

EQ-TARGET;temp:intralink-;e040;326;522q2 ¼ 1

2
ðπTÞ2ξTΣRξ; r2 ¼ ðξTρÞ2

2ξTΣRξ
: (40)

For convenience, using Eqs. (15) and (16), q2 and r2 can be
written in terms of the mean smear and smear covariance,

EQ-TARGET;temp:intralink-;e041;326;464q2 ¼ 1

2
π2ξTΣSξ; r2 ¼ ðξTsÞ2

2ξTΣSξ
: (41)

The function erfzð·Þ in Eq. (39) is the complex error func-
tion (usually denoted erf), and Reð·Þ is the real part of its
complex argument. Equation (39) was obtained with the
aid of Ref. 26 (p. 108, §2.33-1), which is also found in
Ref. 27 [p. 3, §3.2, Eq. (3)]. The complex error function
is found in Fourier analysis, Fresnel integrals, and the plasma
dispersion function.

The error function erfðxÞ for real x is Ref. 25 (p. 48)

EQ-TARGET;temp:intralink-;e042;326;335erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

e−t
2

dt: (42)

The complex error function erfz is the error function28 con-
tinued into the complex plane with a complex argument z in
place of the real argument x. The complex error function is
Hermetian, so erfzðz̄Þ ¼ erfzðzÞ. [Similarly, the standard
error function is odd, so erfð−xÞ ¼ −erfðxÞ.] The complex
error function is bounded between �1 for all real z ¼ q, but
unbounded on the imaginary axis �ir as jrj → ∞. Therefore
Eq. (39) is best computed from expð−jzj2ÞerfzðzÞ rather than
from separate terms. The complex error function and its
properties, related functions, and series expansions are
given in Ref. 29 (p. 297–309). Algorithms, code, and docu-
mentation for computing the complex error function are
found in Refs. 30–34. One must be careful in using any
numerical algorithm — remarks on the method in Ref. 33
indicate that it may be less accurate for complex arguments
near the imaginary axis. It is beyond the scope of this paper
to provide a detailed treatment of numerical methods to com-
pute the complex error function. The reader is directed to
Ref. 30 (§7) as a starting point, but beware that some articles
and algorithms cited in Ref. 30 (§7.25) (and elsewhere) as
methods for computing the complex error function actually
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compute the Faddeeva function. An exception is Ref. 32,
which provides algorithms and code to compute the complex
error function, the complementary complex error function,
and the Faddeeva function. Although Ref. 35 provides algo-
rithms for the Voigt function, it includes two series approx-
imations for the complex error function, which are found in
Refs. 33 and 34. The erfz function in Ref. 31, which com-
prises three separate algorithms noted in comments in the
code, was used with its default settings to generate results
in the next section.

Two limiting cases of the statistical smear OTF are of
interest. (1) When ΣS ¼ 02×2 and s ≠ 0, the statistical
smear OTF becomes the well-known deterministic smear
OTF,17,18

EQ-TARGET;temp:intralink-;e043;63;598OTFSðξÞ ¼ sincðπξTsÞ; ΣS ¼ 0; (43)

where sincðxÞ ¼ sinðxÞ∕x is the sinus cardinalis (cardinal
sine) function. (2) When s ¼ 0 and ΣS ≠ 0, we have
r ¼ 0 in Eq. (38), and the statistical smear OTF becomes

EQ-TARGET;temp:intralink-;e044;63;534OTFSðξÞ ¼
ffiffiffi
π

p
2q

erfðqÞ; s ¼ 0; (44)

where erfðqÞ is the real error function. This is the same as the
result obtained in Ref. 24 where ρ ¼ 0 (s ¼ 0) is assumed at
the outset (and where the motion is 1-D). Equation (44) is the
average of deterministic smear OTFs for images whose
smear lengths are zero-mean Gaussian random variables.
Equations (39)–(41) are the average smear OTF for images
whose smear lengths are nonzero-mean Gaussian random
variables. The relationship between these OTFs are illus-
trated and discussed in Sec. 3.2.

From Eqs. (39)–(41), the statistical smear OTF is clearly
not separable in terms of mean smear and dispersion.
Therefore, it is incorrect to model the deterministic and sto-
chastic effects of smear as the product of the deterministic
smear OTF (the sinc function) and the statistical smear
OTF (with s ¼ 0). Furthermore, the two spatial frequency
components of the statistical smear OTF are also not sepa-
rable, so the statistical smear OTF cannot be expressed as the
product of 1-D OTFs in each frequency variable. A coordi-
nate transformation can be applied so that one component of

s is zero. This rotates the graph ofOTFSðξÞ so that one axis is
aligned with the direction of the mean smear. Even in this
coordinate system, OTFSðξÞ is not separable.

In computing OTFSðξÞ, we could have switched the order
of expectation and time averaging,
EQ-TARGET;temp:intralink-;e045;326;697

OTFSðξÞ ¼
1

T

Z
T∕2

−T∕2
Efe−i2πξTαv̄ðt0Þg dα

¼ E
�
1

T

Z
T∕2

−T∕2
e−i2πξ

Tαv̄ðt0Þ dα
�

¼ Efsinc½πξTTv̄ðt0Þ�g
¼ Efsinc½πξT s̄ðt0Þ�g; (45)

where sincðxÞ ¼ ðsin xÞ∕x and s̄ðt0Þ ¼ Tv̄ðt0Þ is the random
smear over the exposure interval centered at time t0. The
remainder of the derivation in Eq. (45) is omitted here.

3.1.3 Jitter optical transfer function

The third term in Eq. (33) is the characteristic function
[Ref. 25 (p. 115)] associated with the Gaussian density of
ψðtÞ, so the jitter OTF is
EQ-TARGET;temp:intralink-;e046;326;500

OTFJðξÞ ¼ Efe−i2πξTψðtÞg
¼ expð−2π2ξTΣJξÞ: (46)

This is the well-known blur model [Ref. 4 and Eq. (22) in
Ref. 17]. Since the jitter OTF is real, the jitter MTF
is MTFJðξÞ ¼ OTFJðξÞ.

3.2 Comparison of Deterministic and Statistical
Smear Optical Transfer Function

The statistical smear OTF is characterized to show how it
behaves as a function of smear and smear dispersion (stan-
dard deviation of smear). For clarity, the characterization is
shown for one frequency axis. Surface plots are also pro-
vided to illustrate the statistical smear OTF in two dimen-
sions of spatial frequency.

Figure 2 shows two plots of the 2-D statistical smear
OTF evaluated for various mean smear s and various smear
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Fig. 2 Statistical smear OTF (in one dimension of spatial frequency). (a) Mean smear s ¼ 0.2 mm and
smear dispersion σS ranging from 0.02 to 2.0 mm. (b) Smear dispersion σS ¼ 0.2 mmandmean smear s
ranging from 0.02 to 2.0 mm.
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dispersion σS along one dimension in frequency. The fre-
quency axis is one-sided since the OTF is an even function.

Figure 2(a) shows the statistical smear OTF for mean
smear s ¼ 0.2 mm and smear dispersion σS ranging from
0.02 to 2.0 mm. The OTF converges to the sinc function,
Eq. (43), as σS → 0, and converges to the statistical smear
OTF, Eq. (44), as s → 0. The curve for σS ¼ 0 is almost
indistinguishable from the curve for σS ¼ 0.02 and so is
not shown. An interesting characteristic is that the curves
essentially go up as the dispersion increases until the
dispersion equals the mean smear, and then the curves go
down as the dispersion increases further. The degradation
of the statistical smear OTF is pronounced as the dispersion
increases above the mean smear. The curves begin to look
like the sinc function when the dispersion is less than
about half the mean smear.

Figure 2(b) shows the statistical smear OTF for a smear
dispersion σS ¼ 0.2 mm and mean smear s ranging from
0.02 to 2.0 mm. The curve for s ¼ 0 is almost indistinguish-
able from the curve for s ¼ 0.02 and so is not shown. The
curves move left and down as the smear increases, again
indicating worsening degradation of the image. The curves
begin to look like the sinc function when the smear is greater
than twice the dispersion, which is consistent with Fig. 2(a).

The statistical smear OTF in two dimensions of
spatial frequency is shown in the contour plots in Fig. 3.

(A three-dimensional mesh plot is difficult to show clearly,
so it is omitted.) The statistical smear OTF in Fig. 3(a) was
produced with mean smear sx ¼ 0.2, sy ¼ 0 mm and smear
dispersion σx ¼ σy ¼ 0.1 mm. Compare with Fig. 2(a).
Although there is smear in the x direction, the average
smear OTF is not a sinc function, although the response is
a sinc function for each realization of smear in each image.
Figure 3(b) was produced with mean smear sx ¼ sy ¼
0.2 mm and smear dispersion σx ¼ 0.02, σy ¼ 0.2 mm.
Although the mean smear is along a þ45 deg line, the
sinc response is along the x axis, and the erfðqÞ∕q response
is essentially along a −45 deg line. Although this may seem
counterintuitive, it is because of the large random smear in
the y axis. Since the statistical smear OTF can change dra-
matically with changes in the parameters, one must be
careful in making any general statements regarding the
smear OTF. Nevertheless, the statistical smear OTF provides
information about OTF performance that is not revealed by
the deterministic smear OTF (the sinc function) for any
choice of smear such as a “worst-case” smear.

In Fig. 4(a), the statistical smear MTF (σS ¼ 4, s ¼ 0)
tightly bounds the deterministic smear MTF (σS ¼ 0, s ¼ 4).
It also bounds the deterministic smear MTF for s ≤ 4, since the
deterministic smear MTF is smaller for longer smear lengths.

The statistical smear and jitter OTF are shown in Fig. 4(b)
for σS ¼ 4 mm, s ¼ 0, and σJ ¼ 1 mm. From Eq. (60), the
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contribution of smear to the root-mean-square (RMS) atti-
tude motion is σS∕

ffiffiffiffiffi
12

p
, or 1.15 for σS ¼ 4. This is only

slightly larger than the jitter in this example. Empirical evi-
dence indicates that image quality tolerates degradation from
smear better than from jitter. The reason for this is because
the statistical smear OTF goes slowly to zero with increasing
spatial frequency, whereas the jitter OTF goes to zero
quickly.

3.3 Statistical Smear Line Spread Function

The deterministic smear LSF is a rectangle (boxcar) function.
The rectangle function is shown in Fig. 5(a) for three values
of smear. The statistical smear LSF describes the average
LSF over an ensemble of random rectangle LSFs whose
widths are random from one image to another. The statistical
smear LSF can be computed as the expected value of the
random rectangle function. Alternatively, the statistical
smear LSF can be obtained by computing the inverse Fourier

transform of the statistical smear OTF, Eq. (39). The com-
putation is facilitated by substituting Eq. (36) for the inte-
grand in Eq. (38), and then switching the order of
integration and inverse Fourier transform, and by assuming
that the random smear rate is Gaussian. The derivation is
lengthy by either method, so details are omitted. We have
derived the statistical smear LSF in one dimension for
zero-mean Gaussian smear. The 1-D statistical smear LSF
for zero-mean smear is
EQ-TARGET;temp:intralink-;e047;326;653

LSFSðxÞ ¼
1

σS
ffiffiffiffiffi
2π

p
Z

∞

2ðx∕σSÞ2
e−y

y
dy

¼ 1

σS
ffiffiffiffiffi
2π

p f−Ei½−2ðx∕σSÞ2�g; (47)

where x is the spatial distance in the image, σS is the smear
dispersion, and EiðuÞ is the exponential integral function.

The statistical smear LSF is shown in Fig. 5(b) for values
of σS from 0.2 to 2.0 mm. In comparison, the deterministic
smear LSF for smear s is a rectangle function of width s and
amplitude 1∕s (a Dirac delta function for s ¼ 0). The stat-
istical smear LSF has the required property that it has
unit area, as does the deterministic smear LSF.

Gaussian random smears are concentrated around the
mean, which is zero in Eq. (47); hence LSFSðxÞ is large
there, and LSFSðxÞ → ∞ as x → 0. Large smears are infre-
quent, so LSFSðxÞ → 0 as x → �∞. The LSFSðxÞ broadens
but becomes thinner near x ¼ 0 as σS increases. For small σS,
LSFSðxÞ is concentrated near x ¼ 0 and becomes a delta
function [similar to the Dirac delta function δðxÞ] as σS → 0.
As can be seen in Eq. (47), σS scales the graph [Fig. 5(b)] of
LSFSðxÞ in both axes.

4 Pointing Covariance
The OTFs for displacement, smear rate, smear, and jitter in
Table 1 are parameterized with means μ (mean displace-
ment), ρ (mean smear rate), s (mean smear), and covariances
ΣD (displacement covariance), ΣR (smear rate covariance),
ΣS (smear covariance), and ΣJ (jitter covariance) in
Eqs. (13)–(19). These are derived in Appendices B, C,
and E. Covariance matrices for other performance metrics
are also derived. These are the covariances ΣA, ΣSJ, ΣPS,
and ΣWS of the relative pointing motion, smitter (the sum
of smear and jitter), point-to-point stability (the relative
motion at points in time separated by Ts seconds), and
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Table 1 Summary of image motion OTFs and LSF.

Displacement (deterministic)

OTFDðξÞ ¼ exp½−i2πξT p̄ðt0Þ� Eq. (35)

Smear (statistical)

OTFSðξÞ ¼
ffiffiffi
π

p
2q

expð−r 2ÞRe½erfzðq þ i r Þ� Eq. (39)

q2 ¼ 1
2 ðπT Þ2ξTΣRξ ¼ 1

2 π
2ξTΣSξ Eqs. (40) and (41)

r 2 ¼ ðξTρÞ2
2ξTΣRξ

¼ ðξTsÞ2
2ξTΣSξ

Eqs. (40) and (41)

Smear (statistical, s ¼ 0)

OTFSðξÞ ¼
ffiffiffi
π

p
2q

erfðqÞ Eq. (44)

Smear LSF (deterministic, ΣS ¼ 0)

OTFSðξÞ ¼ sincðπξTsÞ Eq. (43)

Jitter (statistical)

OTFJðξÞ ¼ expð−2π2ξTΣJξÞ Eq. (46)

Smear LSF (statistical, s ¼ 0)

LSFSðxÞ ¼
1

σS
ffiffiffiffiffiffi
2π

p f−Ei½−2ðx∕σSÞ2�g Eq. (47)
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windowed stability (displacements separated by Ts seconds).
These are defined in Appendices A, F, G, and H and dis-
cussed further in Sec. 4.1.

Although the covariance matrices can be computed
directly from sampled motion data, that approach is compu-
tationally intensive and does not reveal what spectral content
of the pointing motion contributes significantly to the covari-
ance matrices, hence to the image motion OTF. The spectral
content can also reveal which sources of relative pointing
motion contribute most significantly to the covariance matri-
ces and to the image motion OTFs. The basic idea19,20 is to
compute the PSD SðωÞ from the autocorrelation RðτÞ of the
relative pointing motion pðtÞ. Expressions for the covarian-
ces in terms of the PSD are derived in Appendices A–H.

We assume only that pðtÞ is wide sense stationary during
the exposure intervals. We can ignore pointing motion
between exposure intervals that is not characteristic of the
motion during the exposures (e.g., a slew between exposures).
Any average displacement and trend over the ensemble of
images should be removed so that a valid autocorrelation
and PSD are computed. After subtracting the overall trend,
the trend in each exposure can vary but average to zero over
the ensemble. The average displacement and trend are added
back into μ and s (or ρ) before computing the OTFs.

The autocorrelation of pðtÞ is the matrix
EQ-TARGET;temp:intralink-;e048;63;477

RðτÞ ¼
�
RxxðτÞ RxyðτÞ
RyxðτÞ RyyðτÞ

�

¼ EfpðtÞpTðt − τÞg
¼ Efpðtþ αÞpTðtþ βÞg; (48)

where τ ¼ α − β. The Wiener–Kinchin theorem states that
the PSD of pðtÞ is the Fourier transform of the autocorrela-
tion function RðτÞ of pðtÞ,
EQ-TARGET;temp:intralink-;e049;63;371

SðωÞ ¼
�
SxxðωÞ SxyðωÞ
SyxðωÞ SyyðωÞ

�

¼
Z

∞

−∞
RðτÞe−jωτdτ: (49)

From the inverse Fourier transform, we obtain the auto-
correlation in terms of the PSD,

EQ-TARGET;temp:intralink-;e050;326;752RðτÞ ¼ 1

2π

Z
∞

−∞
SðωÞejωτ dω: (50)

Since pðtÞ is real, RðτÞ is real and even, SðωÞ is real and
even, and we can write Eq. (50) as

EQ-TARGET;temp:intralink-;e051;326;696RðτÞ ¼ 1

2π

Z
∞

−∞
SðωÞ cosðωτÞ dω; (51)

and similarly for Eq. (49).
The PSD and autocorrelation are used in the Appendices

to derive expressions for the covariance matrices ΣA, ΣD,ΣR,
ΣS, ΣJ, ΣPS, and ΣWS. The covariances are computed from
expressions of the form

EQ-TARGET;temp:intralink-;e052;326;598ΣX þmXmT
X ¼ 1

2π

Z
∞

−∞
SðωÞWXðωTÞ dω; (52)

where the subscript X is one of A, D, R, S, J, SJ, WS, and PS.
The WXðωTÞ in Eq. (52) are frequency domain weighting
functions, which are derived in the Appendices and summa-
rized in Table 2. The means mX are also defined in Table 2.

The covariance of the pointing motion is derived in
Appendix A, Eq. (60) and is given by

EQ-TARGET;temp:intralink-;sec4;326;489

ΣA ¼ ΣD þ T2

12
ΣR þ ΣJ

¼ ΣD þ 1

12
ΣS þ ΣJ:

Similarly, the displacement, smear, and jitter weighting func-
tions in Table 2 are such that

EQ-TARGET;temp:intralink-;sec4;326;399WA ¼WD þ 1

12
WS þWJ ¼ 1:

Smitter is the sum of smear and jitter, or equivalently the
pointing motion with the displacement removed. The smitter
covariance in Table 2 is the jitter covariance defined in pre-
vious works,19–22 and is not used to compute the image
motion MTFs in Table 1.

Table 2 Summary of covariances and corresponding frequency domain weighting functions.

Pointing measure Mean Covariance Weighting function Equations

Accuracy μ ΣA W AðωT Þ ¼ 1 Eq. (59)

Displacement μ ΣD WDðωT Þ ¼ sinc2ðωT∕2Þ ¼
hsinðωT∕2Þ

ωT∕2

i2
Eq. (63)

Smear rate ρ ΣR WRðωT Þ ¼
n

12
ωT 2 ½sincðωT∕2Þ − cosðωT∕2Þ�

o
2

Eq. (66)

Smear s ¼ Tρ ΣS ¼ T 2ΣR W SðωT Þ ¼ T 2WRðωT Þ Eq. (68)

Jitter 0 ΣJ W JðωT Þ ¼ 1 −WDðωT Þ − T 2

12WRðωT Þ Eq. (76)

¼ 1 −WDðωT Þ − 1
12W SðωT Þ Eq. (76)

Smitter 0 ΣSJ W SJðωT Þ ¼ 1 −WDðωT Þ Eq. (84)

Point-to-point stability 0 ΣPS W PSðωTsÞ ¼ 2½1 − cosðωT sÞ� ¼ 4 sin2ðωT s∕2Þ Eq. (88)

Windowed stability 0 ΣWS WWSðωT ;ωTsÞ ¼ WDðωT ÞW PSðωT sÞ Eq. (93)
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4.1 Weighting Functions

The displacement, smear, jitter, and smitter weighting func-
tions in Table 2 are plotted in Fig. 6 with T ¼ 1 second. It
can be seen that the frequency content of the pointing con-
tributes to the covariances, hence the OTFs, over certain
ranges of frequency. The displacement weighting function
is lowpass, so low-frequency pointing motion contributes
to the displacement. The smear weighting function peaks
at 0.7 Hz and is zero at 0 and 1.4 Hz, and exhibits smaller
peaks at higher frequencies. The smear weighting function is
essentially bandpass, so pointing motion over a certain range
of frequencies contributes significantly to smear. The jitter

weighting function is highpass. Large-amplitude pointing
motion can be significant at frequencies where the weighting
function is small. The displacement, smear, and jitter weight-
ing functions overlap, and so the spectral content of the
image motion at any frequency contributes to all three mea-
sures of image motion. The contribution of the pointing
motion to displacement, smear, and jitter depends on the
PSD of the pointing motion as well as the weighting func-
tions, so there are no arbitrary frequency regions associated
with displacement, smear, and jitter.

The point-to-point stability covariance ΣPS measures the
change in pointing from one instant to another. The stability
weighting function WPS with Ts ¼ 1 second, shown in
Fig. 7, is a minimum at 0,1,2,. . . Hz and a maximum at
0.5,1.5,2.5,. . . Hz, so frequencies above 1∕Ts contribute to
the point-to-point stability. Point-to-point stability is called
stability in Refs. 21 and 22. The point-to-point stability metric
for spatial data accuracy of line scan data23 can be computed
more efficiently by our method. However, the displacement,
smear, and jitter metrics may be more appropriate.

The windowed stability covariance ΣWS measures the
change in displacement from one image to another. The win-
dowed stability weighting function WWS has two time
parameters, the exposure time T and the time Ts between
image center times. The windowed stability weighting func-
tion is plotted in Fig. 8(a) with T ¼ 1 and Ts ¼ 1. It is essen-
tially a bandpass function and goes to zero at low and high
frequencies for any choice of T and Ts. The windowed
stability weighting function looks significantly different
for various T and Ts, as exemplified by Fig. 8(b) where
T ¼ 1 and Ts ¼ 4. Windowed stability is useful in image
registration and to specify or evaluate performance for a
frame-differencing camera.

4.2 Computation of the Power Spectrum and
Covariances

A pointing performance analysis will typically produce both
time-domain and frequency-domain data. Time-domain data
is typically obtained from a time-domain simulator, and fre-
quency-domain data is typically obtained from transfer func-
tions driven by harmonic or white noise. Although the mean
and covariance of displacement, smear, and jitter can be
computed in either the time domain or in the frequency
domain, their computation is most conveniently and effi-
ciently performed in the frequency domain.
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Fig. 6 Displacement, smear, jitter, and smitter weighting functions
(T ¼ 1).
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The main tool for computing the pointing covariances
from uniformly sampled data is the FFT. The FFT of the
sampled pointing motion pk ¼ pðtkÞ is scaled to a power
spectrum (not a density) by dividing it by M and then com-
puting its magnitude squared, whereM is the number of sam-
ples of data and is assumed to be a power of two, M ¼ 2n.
(This assumption can be relaxed.) The power spectrum is
then shifted (FFTSHIFT in Table 3) so that the zero fre-
quency line is at the center. The frequencies range from
−ðM∕2Þ∕Mδ to ðM∕2 − 1Þ∕Mδ Hz in increments of
1∕Mδ Hz, where δ is the sample interval in seconds. Note
that the sum of the discrete power spectrum is equal to
the second moment of the time-domain data,

EQ-TARGET;temp:intralink-;e053;63;609

XM∕2−1

i¼−M∕2
PðωiÞ ¼

1

M

XM−1

k¼0

pkpTk : (53)

This serves as a useful check that the power spectrum is
scaled correctly. The mean of pk should be subtracted out
so that the computed accuracy and displacement covariances
do not include the overall mean pointing motion.

Since the power spectrum does not converge to the true
spectrum with increasing M, the data should be segmented
and the power spectra of the segments should be averaged.
Alternatively, the power spectrum can be computed from the
biased, and possibly windowed, sample correlation function
RðlÞ of pk. A detailed discussion of computation of the
power spectrum is beyond the scope of this paper; the reader
is referred to Ref. 36 or one of many books on spectral
analysis.

In the frequency domain, the pointing covariances are
evaluated by computing the weighting functions at each fre-
quency point, multiplying by the power spectrum of the
pointing motion at each frequency, and then summing the
terms. This computational algorithm is summarized in
Table 3. The power spectrum can be computed using only
non-negative frequencies, but the zero-frequency term is
multiplied by one and the positive-frequency terms multiplied
by two in the summation. Once the power spectrum is com-
puted, the covariance matrix ΣX corresponding to one of the
weighting functions WXðωTÞ in Table 2 is easily computed.

4.3 Pointing Covariance from Relative Motion
Covariance

In Sec. 4.2, the pointing motion is computed from the relative
translation XðtÞ and relative attitude θðtÞ (a small-angle rep-
resentation) by using the camera model in Eq. (1). The 2 × 2
power spectrum and covariance matrices are then computed
from the pointing motion pðtÞ.

An alternative approach is to first compute the 3 × 3
power spectrum SX of the relative translation and the
3 × 3 power spectrum Sθ of the relative attitude motion.
At this point, there are two paths to compute the covariances
matrices. One path is to apply sensitivity matrices to map the
power spectra of the relative motions into the power spec-
trum of the pointing vector by

EQ-TARGET;temp:intralink-;e054;326;594SðωÞ ¼ CXSXðωÞCT
X þ CθSθðωÞCT

θ ; (54)

where the 2 × 3 sensitivity matrices CX and Cθ are

EQ-TARGET;temp:intralink-;e055;326;551CX ¼ ∂c
∂XT

				
X0;θ0

; Cθ ¼
∂c
∂θT

				
X0;θ0

: (55)

The 3 × 1 vectors X0 and q0 are the nominal relative trans-
lation and attitude, and c is the camera model in Eq. (1). The
covariance matrices are then computed from the power spec-
trum SðωÞ in Eq. (54). This approach is computationally
intensive because the mapping matrices have to be applied
to each frequency component of the power spectra. Further-
more, the attitude motion may be simulated at a higher sam-
ple rate than the translational motion due to typically higher
spectral bandwidth of the attitude motion.

A computationally more efficient path is to compute the
3 × 3 covariance matrices ΣX and Σθ corresponding to
SXðωÞ and SθðωÞ by using the formulas in Table 2. These
covariance matrices are then mapped into the pointing cova-
riances by an equation of the form

EQ-TARGET;temp:intralink-;e056;326;351Σ ¼ CXΣXCT
X þ CθΣθCT

θ : (56)

This may be the preferred approach, since the control system
designer will simulate the relative translation and attitude
motions but may not have details of the camera model. In
addition, image motion on multiple focal planes can be
evaluated from the same set of power spectra and covariance
matrices by applying multiple mapping matrices. Another

Table 3 Summary of calculations for the power spectrum of pointing motion.

Equation Description

M ¼ 2n length of data record

ω ¼ 2π½−M∕2∶1∶M∕2 − 1�∕Mδ frequency range (rad∕ sec), δ ¼ sample time (sec)

PðωÞ ¼ jFFTSHIFT½FFTðp; MÞ�∕M j2 power spectrum of pðt k Þ, 0 ≤ k ≤ M − 1

ΣX ¼
XM∕2−1

i¼−M∕2
Pðωi ÞWXðωi T Þ W X denotes one of the weighting functions

Rl ¼ 1
M

XM−1−l

k¼0

pkpkþl 0 ≤ l ≤ M − 1 biased sample autocorrelation of pðt k Þ

PðωÞ ¼ FFTSHIFTðFFTðR; NÞÞ∕N, N ¼ 2M þ 1 power spectrum from the biased autocorrelation
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advantage of this approach is that the contribution of the
relative translation and relative attitude motions to the dis-
placement, smear, and jitter can be evaluated. An optical sen-
sitivity matrix for the James Webb space telescope (JWST),
formerly called the next generation space telescope, is pre-
sented in Refs. 37 and 38.

4.4 Pointing Performance Analysis

Figure 9 shows the pointing control system for an optical
payload on an imaging vehicle. In the case of a spacecraft,
the system model comprises models of attitude sensors,
actuators, fuel slosh, a solar array drive, internal disturb-
ances, and the optical system, all connected to appropriate
nodes of a reduced-order Nastran model comprising rigid-
body and flexible-body modes and mode shapes. The control
loop is closed through the attitude controller. The attitude
command reference input is a disturbance since it can excite
structural and slosh modes, and the command itself may be
subject to error (e.g., scan rate error or tracking rate error).
Similar integrated modeling approaches are found in
Refs. 38–43. An overview of modeling and analysis is
given in Ref. 44.

As suggested in Ref. 19 (pp. 21–22) and Ref. 20 (pp. 573–
574), the weighting functions can be approximated by linear
transfer functions for use in control system analysis and syn-
thesis. Standard state-space methods can then be applied to
calculate the covariance matrices. A state-space solution that
avoids having to compute the weighted FFT is presented in
Refs. 45 and 46 but would have to be modified for our model
of pointing motion to include smear and a different jitter
weighting function.

Analysis of pointing performance is often faster and
numerically more reliable (due to time scales) if the system
response to disturbances is computed directly in the fre-
quency domain from a linear or linearized closed-loop trans-
fer function rather than in the time domain from a simulator.
A time domain simulator can of course capture nonlinear
and time-varying effects. The response of a system to
high-frequency noise and disturbance is most accurately

and efficiently computed in the frequency domain. For sto-
chastic sources, the power spectrum can be computed
directly by using standard state-space covariance methods.
Once the power spectrum SðωÞ of pðtÞ is computed, it is
a trivial effort to compute the covariances, as discussed in
Sec. 4.2. Segments of the pointing motion pertaining to non-
imaging attitude motions have to be eliminated if they are not
representative of the motion during the exposure interval.

In a linear or linearized system, the covariance of the
pointing motion from individual noise, disturbance, and
other sources can be computed individually and added to
obtain the total pointing covariance. The individual contribu-
tions can then be ranked so that the greatest offenders can
be identified. The power spectrum may be computed as a
combination of a system frequency response, an FFT of
the autocorrelation of time-series data, discrete spectral
lines due to harmonic disturbance sources, and stochastic
sources such as sensor noise. The pointing motion from
each source can be computed at different sample rates or fre-
quency resolutions, though the sample rate should be high
enough and frequency resolution small enough to accurately
represent the high-frequency responses of the system and so
that numerical errors in the computed covariance matrices
are not significant. Similarly, time-domain data from differ-
ent simulations do not have to be resampled to a common
sample rate.

5 Conclusion
Two-dimensional statistical image motion OTFs for dis-
placement, smear, and jitter components of image motion
are derived. The LSF for zero-mean random smear is also
derived. The statistical smear OTF measures the average
optical system performance for an ensemble of images sub-
ject to nonzero mean Gaussian random smear. In compari-
son, the deterministic (sinc function) smear OTF measures
performance for a specified smear length. The familiar
Gaussian jitter OTF is also a statistical OTF.

Limiting cases for the statistical smear OTF are given:
(1) fixed nonzero mean smear and diminishing smear

Fig. 9 Pointing simulation and analysis.
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dispersion, and (2) diminishing mean smear and fixed non-
zero smear dispersion. In the first case, the statistical smear
OTF converges to a sinc function (the well-known determin-
istic smear OTF), and in the second case it converges to theffiffiffi
π

p
erfðqÞ∕2q function. The statistical smear OTF begins

to resemble the sinc function when the mean smear exceeds
about twice the dispersion in the smear. For equal RMS atti-
tude motion due to zero-mean random smear and jitter,
the statistical smear OTF is greater than the jitter OTF at
higher spatial frequencies. This corroborates the empirical
observation that optical systems tolerate smear better than
jitter.

The statistical OTFs are parameterized by means and
covariances of the displacement, smear, and jitter compo-
nents of pointing motion, with spatial frequency as the inde-
pendent variable. The covariances are computed accurately
and efficiently from a temporal-frequency-weighted power
spectrum of the LOS pointing motion. The weighting func-
tions are parameterized with only the exposure time.
Essentially, the displacement weighting function is low
pass, the smear weighting function is bandpass, and the jit-
ter weighting function is highpass. These frequency regions
overlap, so the spectral content of the image motion at any
frequency contributes to all three measures of image
motion; therefore, there are no arbitrary frequency regions
associated with displacement, smear, and jitter. By exam-
ining the weighted power spectrum, a control system engi-
neer can determine the temporal frequencies where the
sensitivity of the OTFs to pointing motion is greatest.
The control system design engineer can then focus on
the most significant disturbance sources or frequencies,
which can lead directly to improvements in the design of
the pointing control system and in the design of the optical
system. Because covariances are additive, individual dis-
turbance sources can be analyzed to determine their rela-
tive contributions to the displacement, smear, and jitter
OTFs. The weighting functions can also be used in control
system synthesis to optimize a controller. The statistical
OTFs and the method for determining their parameters
are a basis for integrated modeling and multidisciplinary
analysis and simulation.

In addition to the image motion OTFs and their associ-
ated means, covariances, and weighting functions, point-
to-point stability and windowed stability are defined and
formulas for the corresponding covariance matrices are
derived. Point-to-point stability measures the change in
pointing from one instant of time to another. Windowed sta-
bility measures the change in displacement from one image
to the next.

Appendix A: Pointing Covariance
The pointing (accuracy) covariance ΣA is the covariance of
pðtÞ and is computed from

EQ-TARGET;temp:intralink-;e057;63;145ΣA þ μμT ¼ Rð0Þ ¼ 1

2π

Z
∞

−∞
SðωÞ dω: (57)

For consistency with other measures of pointing motion,
we write the integral as

EQ-TARGET;temp:intralink-;e058;326;752ΣA þ μμT ¼ 1

2π

Z
∞

−∞
SðωÞWAðωTÞ dω; (58)

where

EQ-TARGET;temp:intralink-;e059;326;711WAðωTÞ ¼ 1: (59)

is the accuracy weighting function. From Eq. (43) and
Eq. (74) we have
EQ-TARGET;temp:intralink-;e060;326;665

ΣA ¼ ΣD þ T2

12
ΣR þ ΣJ

¼ ΣD þ 1

12
ΣS þ ΣJ: (60)

The ð1∕12ÞΣS term is the contribution to pointing covariance
from the smear component of pointing motion.

Appendix B: Displacement Covariance
The displacement and displacement variance were origi-
nally derived in Refs. 19 and 20. We have written the def-
inition of the displacement in a different but equivalent
form in Eq. (8), so it is instructive to rederive the displace-
ment covariance using our definition of the displacement.
The steps involved are similar to those in Refs. 19 and
20. From Eqs. (8) and (50), we obtain the displacement
covariance,

EQ-TARGET;temp:intralink-;e061;326;444

ΣDþμμT ¼ Efp̄ðtÞp̄TðtÞg

¼ E
n1
T

Z
T∕2

−T∕2
pðtþαÞdα 1

T

Z
T∕2

−T∕2
pTðtþβÞdβ

o

¼ 1

T

Z
T∕2

−T∕2

1

T

Z
T∕2

−T∕2
EfpðtþαÞpTðtþβÞgdαdβ

¼ 1

T

Z
T∕2

−T∕2

1

T

Z
T∕2

−T∕2
Rðα−βÞdαdβ

¼ 1

T

Z
T∕2

−T∕2

1

T

Z
T∕2

−T∕2

1

2π

Z
∞

−∞
SðωÞejωðα−βÞ dω dαdβ

¼ 1

2π

Z
∞

−∞
SðωÞ 1

T

Z
T∕2

−T∕2
ejωα dα

1

T

Z
T∕2

−T∕2
e−jωβ dβdω

¼ 1

2π

Z
∞

−∞
SðωÞsinc2ðωT∕2Þdω: (61)

Since the pointing error is assumed to be a wide sense
stationary process, the autocorrelation is independent of
t0, and so the displacement metric is valid for all t0. The dis-
placement covariance can be written as

EQ-TARGET;temp:intralink-;e062;326;196ΣD þ μμT ¼ 1

2π

Z
∞

−∞
SðωÞWDðωTÞ dω; (62)

where

EQ-TARGET;temp:intralink-;e063;326;142WDðωTÞ ¼ sinc2ðωT∕2Þ ¼


sinðωT∕2Þ
ωT∕2

�
2

: (63)

is the displacement weighting function.
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Appendix C: Smear and Smear Rate
Covariance
The smear rate covariance is obtained by substituting the
smear rate from Eq. (11) into Eq. (48) and then by using
Eq. (50), whence

EQ-TARGET;temp:intralink-;e064;63;690ΣR þ ρρT ¼ Efv̄ðt0Þv̄Tðt0Þg

¼ E
�
12

T3

Z
T∕2

−T∕2
pðt0 þ αÞα dα 12

T3

Z
T∕2

−T∕2
pTðt0 þ βÞβ dβ

�

¼ 12

T3

Z
T∕2

−T∕2

12

T3

Z
T∕2

−T∕2
Efpðt0 þ αÞpTðt0 þ βÞgαβ dα dβ

¼ 12

T3

Z
T∕2

−T∕2

12

T3

Z
T∕2

−T∕2
Rðα − βÞαβ dα dβ

¼ 12

T3

Z
T∕2

−T∕2

12

T3

Z
T∕2

−T∕2

1

2π

Z
∞

−∞
SðωÞejωðα−βÞ dωαβ dα dβ

¼ 1

2π

Z
∞

−∞
SðωÞ 12

T3

Z
T∕2

−T∕2
αejωα dα

12

T3

Z
T∕2

−T∕2
βe−jωβ dβ dω

¼ 1

2π

Z
∞

−∞
SðωÞ

�
12

ωT2
½sincðωT∕2Þ − cosðωT∕2Þ�

�
2

dω:

(64)

Since the pointing error is assumed to be a wide sense
stationary process, the autocorrelation is independent of t0,
and so the smear rate metric is valid for all t0. The smear rate
covariance can be written as

EQ-TARGET;temp:intralink-;e065;63;422ΣR þ ρρT ¼ 1

2π

Z
∞

−∞
SðωÞWRðωTÞ dω; (65)

where

EQ-TARGET;temp:intralink-;e066;63;368WRðωTÞ ¼
�

12

ωT2
½sincðωT∕2Þ − cosðωT∕2Þ�

�
2

(66)

is the smear rate weighting function.
The smear was defined as s ¼ Tρ, where ρ is the average

smear rate. The smear covariance ΣS is given by

EQ-TARGET;temp:intralink-;e067;63;295ΣS ¼ T2ΣR; (67)

and the corresponding smear weighting function is

EQ-TARGET;temp:intralink-;e068;63;253WSðωTÞ ¼ T2WRðωTÞ: (68)

Appendix D: Correlation of Displacement and
Smear Rate
Here, we show that Efp̄ðt0Þv̄Tðt0Þg ¼ 0. This result is used
in the derivation of Eq. (72):

EQ-TARGET;temp:intralink-;e069;326;752

Efp̄ðt0Þv̄Tðt0Þg

¼ E
�
1

T

Z
T∕2

−T∕2
pðt0 þ αÞα dα 12

T3

Z
T∕2

−T∕2
pTðt0 þ βÞβ dβ

�

¼ 1

T

Z
T∕2

−T∕2

12

T3

Z
T∕2

−T∕2
Efpðt0 þ αÞpTðt0 þ βÞgβ dα dβ

¼ 1

T

Z
T∕2

−T∕2

12

T3

Z
T∕2

−T∕2
Rðα − βÞβ dα dβ

¼ 1

T

Z
T∕2

−T∕2

12

T3

Z
T∕2

−T∕2

1

2π

Z
∞

−∞
SðωÞejωðα−βÞ dωβ dα dβ

¼ 1

2π

Z
∞

−∞
SðωÞ 12

T3

Z
T∕2

−T∕2
ejωα dα

1

T

Z
T∕2

−T∕2
βe−jωβ dβ dω

¼ 1

2π

Z
∞

−∞
SðωÞ 12

T3

jT
ω

sincðωT∕2Þ

· ½sincðωT∕2Þ − cosðωT∕2Þ� dω: (69)

The integrand is an odd function in ω, so the integral is zero.
The integrand is also purely imaginary, but the left side of the
equation is real, so the integral evaluates to zero.

Appendix E: Jitter Covariance
The mean-square jitter over the interval Iðt0Þ is given by

EQ-TARGET;temp:intralink-;e070;326;456Jðt0Þ ¼
1

T

Z
T∕2

−T∕2
½ψðt0 þ αÞ�½ψðt0 þ αÞ�T dα: (70)

The jitter covariance is the expected value of the average
square jitter over Iðt0Þ:

EQ-TARGET;temp:intralink-;e071;326;385ΣJ ¼ EfJðt0Þg ¼ 1

T

Z
T∕2

−T∕2
Ef½ψðt0 þ αÞ�½ψðt0 þ αÞ�Tg dα:

(71)

Since ψðt0 þ αÞ is zero mean, as a result of the least-squares
minimization, we will omit the means μ and ρ from the der-
ivation, since they will drop out. We will also use the fact that
Efp̄ðt0Þv̄ðt0Þg ¼ 0, which is shown in Appendix D. Now
substitute for ψðt0 þ αÞ from Eq. (4) and carry out the
expectation using the definitions of ΣA, ΣD, and ΣR:

EQ-TARGET;temp:intralink-;e072;326;259

ΣJ ¼
1

T

Z
T∕2

−T∕2
½ΣA þ ΣD þ α2ΣR − Efpðt0 þ αÞp̄Tðt0Þ

þ p̄ðt0ÞpTðt0 þ αÞg þ αpðt0 þ αÞv̄Tðt0Þ
þ αv̄ðt0ÞpTðt0 þ αÞg þ p̄ðt0Þv̄Tðt0Þ þ v̄ðt0Þp̄Tðt0Þg� dα

¼ ΣA þ ΣD þ T2

12
ΣR − E

�
1

T

Z
T∕2

−T∕2
½pðt0 þ αÞp̄Tðt0Þ

þ p̄ðt0ÞpTðt0 þ αÞ þ αpðt0 þ αÞv̄Tðt0Þ

þ αv̄ðt0ÞpTðt0 þ αÞ þ p̄ðt0Þv̄Tðt0Þ þ v̄ðt0Þp̄Tðt0Þ� dα
�

¼ ΣA þ ΣD þ T2

12
ΣR − 2

�
ΣD þ T2

12
ΣR þ 0

�
: (72)
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Finally we have an expression for the jitter covariance,

EQ-TARGET;temp:intralink-;e073;63;741ΣJ ¼ ΣA − ΣD −
T2

12
ΣR: (73)

Substitute from Eq. (14) to write the jitter covariance
as

EQ-TARGET;temp:intralink-;e074;63;677ΣJ ¼ ΣA − ΣD −
1

12
ΣS: (74)

Now substitute Eqs. (58), (59), (62), (63), (65), (66), (67),
and (68) into Eq. (74) to obtain the jitter covariance in terms
of SðωÞ:

EQ-TARGET;temp:intralink-;e075;63;602ΣJ ¼
1

2π

Z
∞

−∞
SðωÞWJðωTÞ dω; (75)

where
EQ-TARGET;temp:intralink-;e076;63;548

WJðωTÞ ¼ 1 −WDðωTÞ −
T2

12
WRðωTÞ

¼ 1 −WDðωTÞ −
1

12
WSðωTÞ: (76)

Appendix F: Smitter Covariance
Jitter was formerly defined in Refs. 20–22 as

EQ-TARGET;temp:intralink-;e077;63;427ϕðtÞ ¼ pðtÞ − p̄ðt0Þ t ∈ Iðt0Þ; (77)

or equivalently

EQ-TARGET;temp:intralink-;e078;63;385ϕðt0 þ αÞ ¼ pðt0 þ αÞ − p̄ðt0Þ α ∈ ½−T∕2; T∕2�: (78)

It is easy to show that p̄ðt0Þ can be obtained from the least-
squares minimization of

EQ-TARGET;temp:intralink-;e079;63;337

Jϕðt0Þ ¼
1

T

Z
T∕2

−T∕2
½ϕðt0 þ αÞ�T ½ϕðt0 þ αÞ� dα

¼ 1

T

Z
T∕2

−T∕2
½pðt0 þ αÞ − p̄ðt0Þ�T ½pðt0 þ αÞ − p̄ðt0Þ� dα;

(79)

which yields the same expression for p̄ðt0Þ as in Eq. (8).
From Eq. (78) and Eq. (3), we have

EQ-TARGET;temp:intralink-;e080;63;224

ϕðt0 þ αÞ ¼ pðt0 þ αÞ − p̄ðt0Þ
¼ αv̄ðt0Þ þψðt0 þ αÞ α ∈ ½−T∕2; T∕2�: (80)

Thus, the former jitter defined in Refs. 20–22 is the sum
of smear and jitter, which is termed “smitter.” Because
smear and jitter affect the image motion OTF differently,
the former definition of jitter is less useful than the present
definition.

The mean square smitter over the interval Iðt0Þ is

EQ-TARGET;temp:intralink-;e081;326;741Jϕðt0Þ ¼
1

T

Z
T∕2

−T∕2
½ϕðt0 þ αÞ�½ϕðt0 þ αÞ�T dα: (81)

The smitter covariance is
EQ-TARGET;temp:intralink-;e082;326;686

ΣSJ ¼ EfJϕðt0Þg

¼ 1

T

Z
T

−T
Ef½ϕðt0 þ αÞ�½ϕðt0 þ αÞ�Tg dα

¼ ΣA − ΣD

¼ T2

12
ΣR þ ΣJ: (82)

The smitter covariance ΣSJ in Eq. (82) is analogous to the
jitter variance defined in Refs. 20–22.

Substitute Eqs. (58), (59), (62), and (63) into Eq. (82) to
obtain the smitter covariance in terms of the PSD SðωÞ:

EQ-TARGET;temp:intralink-;e083;326;538ΣSJ ¼
1

2π

Z
∞

−∞
SðωÞWSJðωTÞ dω; (83)

where

EQ-TARGET;temp:intralink-;e084;326;484WSJðωTÞ ¼ 1 −WDðωTÞ: (84)

Appendix G: Point-to-Point Stability
Covariance
The change in the LOS pointing over an interval of length T
is given by

EQ-TARGET;temp:intralink-;e085;326;377ΔTs
ðtÞ ¼ pðtÞ − pðt − TsÞ: (85)

The point-to-point stability covariance measures the mean
square change in pointing from one instant to another and is
given by the second order structure function
EQ-TARGET;temp:intralink-;e086;326;312

ΣPS ¼ Ef½pðtÞ − pðt − TsÞ�½pðtÞ − pðt − TsÞ�Tg
¼ 2½Rð0Þ − RðTsÞ�: (86)

These equations suggest two ways of computing Σ2
PS in the

time domain, either by a time average or by way of autocor-
relation. In the frequency domain, the point-to-point stability
covariance is obtained by substituting Eq. (50) or Eq. (51)
into Eq. (71):
EQ-TARGET;temp:intralink-;e087;326;207

ΣPS ¼
1

2π

Z
∞

−∞
SðωÞ2ð1 − ejωTsÞ dω

¼ 1

2π

Z
∞

−∞
SðωÞ2½1 − cosðωTsÞ� dω

¼ 1

2π

Z
∞

−∞
SðωÞWPSðωTsÞ dω; (87)

where WPSðωTsÞ is the stability weighting function

EQ-TARGET;temp:intralink-;e088;326;98WPSðωTsÞ ¼ 2½1 − cosðωTsÞ� ¼ 4 sin2ðωTs∕2Þ: (88)
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An obvious characteristic of the stability weighting function
WPSðωTsÞ is that it does not roll off at high frequency. This is
because pðtÞ and pðt − TsÞ are at instantaneous points in
time. A useful fact is thatWPSðωTsÞ ≤ 4, so ΣPSðTsÞ ≤ 4ΣA,
and in fact ΣPSðTsÞ ≤ 4ΣA. Therefore, if 4ΣA is less than the
stability requirement, no further analysis of stability is
needed. These statements hold if the trace is applied to
each side of the inequality. (For matrices A and B, A ≤ B
means B − A has non-negative eigenvalues.)

Appendix H: Windowed Stability Covariance
There may be a requirement on the change in displacement
of one image compared with a subsequent image. The
change in displacement over an interval of length Ts is
given by

EQ-TARGET;temp:intralink-;e089;63;562Δ̄Ts
ðtÞ ¼ p̄ðtÞ − p̄ðt − TsÞ: (89)

The windowed stability covariance measures the mean
square change in displacement given by the second order
structure function
EQ-TARGET;temp:intralink-;e090;63;497

ΣWS ¼ Ef½p̄ðtÞ − p̄ðt − TsÞ�½p̄ðtÞ − p̄ðt − TsÞ�Tg
¼ 2½Rp̄ð0Þ − Rp̄ðTsÞ�: (90)

The autocorrelation Rp̄ðTÞ ¼ Efp̄ðtÞp̄Tðt − TÞg of p̄ðtÞ is
most easily obtained from the inverse Fourier transform of
the PSD of p̄ðtÞ,

EQ-TARGET;temp:intralink-;e091;63;414Rp̄ðTÞ ¼
1

2π

Z
∞

−∞
SðωÞWDðωTÞejωT dω: (91)

Substituting Eq. (91) into Eq. (90) yields the windowed sta-
bility covariance
EQ-TARGET;temp:intralink-;e092;63;349

ΣWS ¼ 1

2π

Z
∞

−∞
SðωÞWDðωTÞ2ð1 − ejωTsÞ dω

¼ 1

2π

Z
∞

−∞
SðωÞWDðωTÞ2½1 − cosðωTsÞ� dω

¼ 1

2π

Z
∞

−∞
SðωÞWDðωTÞWPSðωTsÞ dω

¼ 1

2π

Z
∞

−∞
SðωÞWDðωTÞWWSðωT;ωTsÞ dω; (92)

where

EQ-TARGET;temp:intralink-;e093;63;213WWSðωT;ωTsÞ ¼ WDðωTÞWPSðωTsÞ (93)

is the windowed stability weighting function. The windowed
stability weighting function is shown in Fig. 8. The presence
of WDðωÞ in Eq. (93) causes the weighting to go to zero as
the frequency increases.
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