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Abstract. This study proposes a hybrid of a recurrent fuzzy cerebellar model articulation controller (RFCMAC)
and a weighted strategy for solving single-image visibility in a degraded image. The proposed RFCMACmodel is
used to estimate the transmission map. The average value of the brightest 1% in a hazy image is calculated
for atmospheric light estimation. A new adaptive weighted estimation is then used to refine the transmission
map and remove the halo artifact from the sharp edges. Experimental results show that the proposed method
has better dehazing capability compared to state-of-the-art techniques and is suitable for real-world applications.
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1 Introduction
Weather conditions can severely limit visibility in outdoor
scenes. In such cases, atmospheric phenomena such as
fog and haze will significantly degrade visibility in the cap-
tured scene. Since visibility is dependent on the air, the
amount of particles in the air will affect image visibility.
This phenomenon is generally composed of water droplets
or particles and cannot be ignored. Both the absorption
and scattering of light by particles and gases in the atmos-
phere cause the visibility to decrease, whereas the scattering
of particulate in visibility causes more serious damage than
the absorption of light. As a result, distant object and part
scenes are not visible. That is, the image loses contrast and
color fidelity, and the visual quality of the scene is reduced.
In a visual sense, the quality of the degraded image is
unacceptable. Therefore, a simple and effective image scene
recovery method is essential. Image dehazing is a challeng-
ing problem, and image recovery technology has attracted
the attention of many researchers. The low visibility in hazy
images affects the accuracy of computer vision techniques,
such as object detection, face tracking, license plate recog-
nition, satellite imaging, and so on, as well as multimedia
devices, such as surveillance systems and advanced driver
assistance systems. Hence, haze removal techniques are
important for improving the visibility of images. Restor-
ing hazy images is a particularly challenging case that
requires specific strategies. Therefore, widely varying meth-
ods have emerged to solve this problem. In recent years,
enhancing images represents a fundamental task in many
image processing and vision applications. Proposed strate-
gies for enhancing the visibility of a degraded image include
the following.

The first type is the nonmodule method, such as histo-
gram equalization,1 Retinex theory,2 wavelet transform,3 and
gamma correction curve.4 However, the shortcomings of
these methods are that they seriously affect the clear region
and also keep color fidelity less effectively.

The second type is the module method, which depends on
the physical mode. Compared to the nonmodule method, these
methods achieve better dehazing results by modeling scatter-
ing and absorption and by using multiple different atmos-
pheric conditions in input images, such as scene depth,5,6

multiple images,7–9 polarization angles,10,11 and geometry
models.12,13 Narasimhan and Nayar7,8 developed an interactive
depth map for removing weather effects, but their method had
limited effectiveness. Kopf et al.13 presented a novel deep
photo system for using prior knowledge of the scene geometry
when browsing and enhancing photos. However, the method
required multiple images or additional information to get a
better estimate of scattering and absorption, which limited
its applications. Hautière et al.12 designed a method using
weather conditions and a priori structure of a scene to restore
the image contrast for vehicle vision systems.

A novel technique developed in Refs. 10, 14, and 15
exploited the partially polarized properties of airlight. The
haze effect was estimated by using different angles of
polarized filters to analyze the resulting images of the same
scene. In other words, calculating the difference among these
images enabled the use of the magnitude of polarization to
estimate haze light components. Because the polarization
light is not the major degradation factor, these methods have
less robustness for scenes with dense haze.

Another recently developed strategy used a module and
a single hazy image as input information. This approach
has recently become a popular way of eliminating image
haze by different strategies.16–20 Roughly, these methods can
be categorized as contrast-based and statistical approaches.
An example of a contrast-based approach is the Tan17

method. In this case, the image restoration maximizes the*Address all correspondence to: Cheng-Jian Lin, E-mail: cjlin@ncut.edu.tw

Optical Engineering 083104-1 August 2016 • Vol. 55(8)

Optical Engineering 55(8), 083104 (August 2016)

http://dx.doi.org/10.1117/1.OE.55.8.083104
http://dx.doi.org/10.1117/1.OE.55.8.083104
http://dx.doi.org/10.1117/1.OE.55.8.083104
http://dx.doi.org/10.1117/1.OE.55.8.083104
http://dx.doi.org/10.1117/1.OE.55.8.083104
http://dx.doi.org/10.1117/1.OE.55.8.083104
mailto:cjlin@ncut.edu.tw
mailto:cjlin@ncut.edu.tw
mailto:cjlin@ncut.edu.tw


local contrast while limiting the image intensity to be less
than the global atmospheric light value. Tarel and Hautière19

combined a computationally effective technique with a
contrast-based technique. Their method assumed that the
depth map must be smooth except along edges with large
depth jumps. The second category of statistical approaches
includes the technique presented in Fattal,16 which employs a
graphical model to solve ambiguous atmospheric light color
and assumes the image shading and scene transmission are
partially uncorrelated. According to this assumption, math-
ematical statistics were utilized to estimate the albedo of a
scene and infer the transmission medium. The method pro-
vides a physically consistent estimation. However, because
the variation of the two functions in Ref. 16 is not obvious,
this method requires substantial fluctuation of color informa-
tion and luminance in the hazy scene. He et al.18 developed a
statistical approach for observing the dark channel and for
roughly estimating the transmission map. Then, they refined
the final depth map by using a relatively computationally
expensive matting strategy.21 In this approach, pixels must
be found through the entire image, which requires a long
computation time. Nishino et al.20 used a Bayesian probabi-
listic concept by fully leveraging their latent statistical struc-
tures to estimate the scene albedo and depth from a single
degraded image. A recent study by Gibson and Nguyen22

proposed a new image dehazing method based on the dark
channel concept. Unlike the previous dark channel method,
their method finds the average of the darkest pixels in each
ellipsoid. However, this assumption in Ref. 22 may find
several inaccurate pixels for those corresponding to bright
objects. Fattal23 derived a local formation model that
explains color lines in the context of hazy scenes and
used the model to offset lines for recovering the scene trans-
mission. In addition, Ancuti and Ancuti24 also proposed
a fusion-based strategy for enhancing white balance and
contrast in two original hazy image inputs. In other words,
in order to keep the most significant detected features, the
inputs in the fusion process are weighted by the specific
calculation maps.

Recently, artificial neural networks (ANNs) have been
widely used in many different fields. Research topics related
to ANNs have proved suitable for many areas, such as
control,25,26 identification,27,28 pattern recognition,29,30

equalization,31,32 and image processing.33,34 The cerebellar
model articulation controller (CMAC) model proposed by
Albus35,36 is usually applied in ANNs. The CMAC model
imitates the structure and function of the cerebellum of
a human brain and it is similar to a local network. The
CMAC model can be viewed as a basis function network
that uses plateau basis functions to compute the output of
the model for a given input data point. Therefore, only
the basis functions assigned to the hypercube covering the
input data are needed. In other words, for a given input vec-
tor, only a few of the network nodes (or hypercube cells) are
active and will effectively contribute to the corresponding
network output. Thus, the CMAC has good learning and
generalization capabilities. However, the CMAC requires
a large amount of memory for solving the problem of
the high dimension,37,38 is ineffective for online learning
systems,39and has relatively poor function approximation
ability.40,41 Another problem is that it is difficult to determine
the memory structure, e.g., to adaptively select structural

parameters, in the CMAC model.42,43 Recently, several
researchers have proposed various solutions for the above
problems, including fuzzy membership functions,44 selection
of learning parameters,45 topology structure,46 spline func-
tions,47 and fuzzy C-means.48 Fuzzy theory embedded in
the CMAC model has been widely discussed. Thus, a
fuzzy CMAC called FCMAC49 was proposed. It takes full
advantage of the concept of fuzzy theory and combines
it with the local generalization feature of the CMAC
model.49,50 A recurrent network is embedded in the CMAC
model by adding feedback connections with a receptive field
cell to the CMAC model,51 which has the advantage of
dynamic characteristics (considering past output network
information). However, the above-mentioned methods have
several drawbacks. For example, the mapping capability of
local approximation by hyper-planes is not good enough, and
more hypercube cells (rules) are required.

Therefore, this study developed a recurrent fuzzy cerebel-
lar model articulation controller (RFCMAC) model to solve
the above problems and to enable applications in widely
various fields. A hybrid of the recurrent fuzzy CMAC and
weighted strategy is used to process the image dehazing
problem. The proposed method provides high-quality
images and effectively suppresses halo artifacts. The advan-
tages of the proposed method are as follows:

1. The recurrent structure combines the advantages of
local and global feedback.

2. Many studies52,53 have considered only the past states
in the recurrent structure, which is insufficient without
referring to current states. In other words, the proposed
method considers the correlation between past states
and current states.

3. Using the proposed method to determine the values of
the transmission that map increases accuracy in select-
ing the average of the brightest 1% of atmospheric
light, as atmospheric light.

4. The proposed method applies a weighted strategy to
generate a refining transmission map, thereby remov-
ing the halo effect.

The rest of this paper is structured as follows. Section 2
discusses the theoretical background of light propagation in
such environments. In Sec. 3, we introduce the proposed
RFCMAC and weighted strategy for image dehazing.
Section 4 presents the experimental results and compares
the proposed approach with other state-of-the-art methods.
Finally, conclusions are drawn in Sec. 5.

2 Theory of Light Propagation
Generally, a camera being used to take outdoor photographs
obtains an image by the light of the receiving environment,
such as the illumination of sunlight, reflecting light from a
surface as shown in Fig. 1. Due to absorption and scattering,
the light crossing the atmosphere is attenuated and dispersed.
In physical terms, the number of suspended particles is low
in sunny weather. Thus, the image quality is clear. In contrast,
dust and water particles in the air during volatile weather
scatter light, which severely degrades image quality. In such
degraded circumstances, only 1% of the reflected light reaches
the observer, and it causes poor visibility.54 McCartney55 also
noted that haze is an atmospheric phenomenon. That is, the
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clear sky is obscured by dust, smoke, and other dry particles.
In the captured image, the haze generates a distinctive gray
hue, reducing visibility for the image. Based on the above,
the physical theory of a hazy model can be expressed as

EQ-TARGET;temp:intralink-;e001;63;529IðxÞ ¼ JðxÞtðxÞ þ A½1 − tðxÞ�; (1)

where I is the observed image with haze and x ¼ ðx1; x2Þ
denotes the observed RGB colors’ pixel coordinates. In
Eq. (1), the hazy model consists of two main components,
a direct attenuation and a veiling light (i.e., airlight). JðxÞ
is the light reflected from the surfaces, or the haze-free
image; tðxÞ ∈ 0;1 represents the transmission values of
reflected light. A is the atmospheric light. The first compo-
nent JðxÞtðxÞ represents the direct attenuation or the direct
transmission of the scene radiance. That is, attenuation
results from the interaction between scene radiance and par-
ticles during transmission. In other words, it corresponds to
the reflected light of the surfaces in the scene and reaches the
camera directly without being scattered. The other compo-
nent A½1 − tðxÞ� expresses the real color cast of the scene
due to the scattering of atmospheric light. t denotes the
amount of light transmission between the observer and
the surface. Assuming a homogenous medium, transmission
t is, therefore, tðxÞ ¼ e−βdðxÞ, where β is the medium attenu-
ation coefficient and d represents the distance between the
observer and the considered surface. Since transmission is
inversely proportional to depth, this feature obtains image
depth information without additional sensing devices.
Therefore, only the transmission map and the color vector
of atmospheric light are needed to eliminate the hazing effect
in the image.

3 Proposed Method
This section presents in detail our proposed method, which
uses the RFCMAC model and a weighted strategy to recover
scenes from the removal of a hazy image. Figure 2 shows
the flowchart of the proposed method, and the details are
presented in the following sections.

3.1 Estimation of Transmission Map Features Using
RFCMAC Model

The transmission map and atmospheric light have important
roles in haze removal. Therefore, a good dehazing method
with estimation of both the transmission map and the
atmospheric light can appropriately process the recovery of

a hazy image. Haze, which is generated by light attenuation,
depends on the distribution of the number of particles in
the air. According to Eq. (1), both the transmission map
and the atmospheric light are important factors. Thus,
the transmission factor and atmospheric lightness must
be improved. This study proposes an RFCMAC model
for estimating the transmission map more accurately. The
RFCMAC model combines the traditional CMAC model,
an interactive feedback mechanism, and a Takagi—
Sugeno—Kang (TSK)-type linear function to obtain better
solutions. The proposed model also adopts an interactive
feedback mechanism, which has the ability to capture critical
information from other hypercube cells. The structure of the
RFCMAC and associated learning algorithm are presented
as follows.

3.1.1 Structure of the RFCMAC model

The performance of the proposed RFCMAC model is
enhanced by using an interactive feedback mechanism in
the temporal layer and a TSK-type linear function in the sub-
sequent layer. Figure 3 shows the six-layered structure of
the RFCMAC model. The structure realizes a similar fuzzy
IF–THEN rule (hypercube cell).

Rule j:
EQ-TARGET;temp:intralink-;sec3.1.1;326;189

IFx1 isA1j and x2 isA2j: : : and xi isAij: : : and xND
isANDj

THENyj¼
X
j¼1

Oð4Þ
j

�
α0jþ

XND

i¼1

αijxi

�
;

where xi represents the i’th input variables, yj denotes the
local output variables, Aij is the linguistic term using the

Gaussian membership function in the antecedent part, Oð4Þ
j

is the output of the interactive feedback, and α0j þ
PND

i¼1 αijxi

Fig. 1 Haze imaging model.

Fig. 2 Flow diagram of the proposed dehazing algorithm.
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is the basis TSK-type linear function of input variables.
The operation functions of the nodes in each layer of the
RFCMAC model are described as follows. For the following
description, OðlÞ represents the output of a node in the
l’th layer.

Layer 1 (input layer): The layer is used as an input feature
vector x

⇀ ¼ ðx1; x2; : : : ; xND
Þ, and the inputs are crisp

values. This layer does not require adjustments of weight
parameters. Each node need only directly transmit input
values to the next layer. The corresponding outputs are
calculated as

EQ-TARGET;temp:intralink-;e002;63;367Oð1Þ
i ¼ uð1Þi ; and uð1Þi ¼ xi: (2)

Layer 2 (fuzzification layer): The layer performs a fuzzi-
fication operation and uses a Gaussian membership function
to calculate the firing degree of each dimension. The
Gaussian membership function is defined as follows:

EQ-TARGET;temp:intralink-;e003;63;289Oð2Þ
ij ¼ exp

"
−
ðuð1Þi −mijÞ2

σ2ij

#
; and uð2Þi ¼ Oð1Þ

i ; (3)

where mij and σij denote the mean and variance of the
Gaussian membership function, respectively.

Layer 3 (spatial firing layer): Each node of this layer
receives the firing strength of the associated hypercube
cell by the node of a fuzzy set in layer 2. All layer two out-
puts are collected in layer three. Specifically, each node per-
forms an algebraic product operation on inputs to generate
spatial firing strength αj. The layer determines the number of
hypercube cells in the current iteration. For each inference
node, the output function can be computed as follows:

EQ-TARGET;temp:intralink-;e004;63;128Oð3Þ
j ¼

YND

i

uð3Þij ; and uð3Þij ¼ Oð2Þ
ij ; (4)

where Π denotes product operation.

Layer 4 (temporal firing layer): Each node is a recurrent
hypercube cell node, including the internal feedback (self-
loop) and external interactive feedback loop. The output of
the recurrent hypercube cell node depends on both the cur-
rent spatial and previous temporal firing strengths. That is,
each node refers to relative information from itself and other
nodes. Because the self-feedback of the hypercube cell node
is not sufficient to represent the all necessary information,
the proposed model refers to relative information not only
from the local source (node’s feedback from itself) but also
from the global source (feedback from other nodes). The
linear combination function of the temporal firing strength
is described as follows:

EQ-TARGET;temp:intralink-;e005;326;346Oð4Þ
j ¼

X
k¼1

½λqkj ·Oð4Þ
k ðt−1Þ�þð1−γqj Þ ·uð4Þj ; and uð4Þj ¼Oð3Þ

j ;

(5)

where λqkj represents recurrent weights and determines the
compromise ratio between the current and previous inputs to

the network outputs. γqj ¼
PNA

k¼1λ
q
kj and λ

q
kj¼

Rq
kj

NA
ð0≤Rq

kj≤1Þ
denote the interactive weights of the hypercube cells from
itself and other nodes. Rq

kj is a connection weight from
the k’th node to the j’th node and is a random value between
0 and 1. NA is the number of hypercube cells. Therefore, the
compromise ratio between the current and previous inputs is
between 0 and 1.

Layer 5 (consequent layer): Each node is a function of
a linear combination of input variables in this layer. The
equation is expressed as

EQ-TARGET;temp:intralink-;e006;326;146Oð5Þ
j ¼ Oð4Þ

j

�
a0j þ

XND

i¼1

aijxi

�
: (6)

Layer 6 (output layer): This layer uses the centroid of area
(COA) approach to defuzzify a fuzzy output into a scalar
output. Then the actual output y is derived as follows:

Fig. 3 Structure of the RFCMAC model.

Optical Engineering 083104-4 August 2016 • Vol. 55(8)

Wang, Tai, and Lin: Transmission map estimation of weather-degraded images using a hybrid of recurrent fuzzy. . .



EQ-TARGET;temp:intralink-;e007;63;322y ¼
PNA

j¼1 O
ð4Þ
j

�
a0j þ

PND
i¼1 aijxi

�
PNA

j¼1 O
ð4Þ
j

: (7)

3.1.2 Learning algorithm of the RFCMAC model

The proposed learning algorithm combines structure
learning and parameter learning when constructing the
RFCMAC model. Figure 4 shows a flowchart of the pro-
posed learning algorithm. First, the self-constructing input
space partition in structure learning is based on the degree
measure used to appropriately determine the various distri-
butions of the input training data. In other words, the firing
strength in structure learning is used to determine whether a
new fuzzy hypercube cell (rule) should be added to satisfy
the fuzzy partitioning of input variables. Second, the param-
eter learning procedure performs the back propagation
algorithm by minimizing a given cost function to adjust
parameters. The RFCMAC model initially has no hypercube
cell nodes except the input–output nodes. According to the
reception of online incoming training data in the structure
and parameter learning processes, the nodes from layer 2
to layer 5 are created automatically. Parameters Rq

kj and

aij in the initial model are randomly generated between
0 and 1.

Structure learning algorithm. Generally, the main pur-
pose of structured learning is to determine whether a new
hypercube cell should be extracted from the training data.
For each incoming pattern xi, the firing strength of the spatial
firing layer can be defined as the degree to which the incom-
ing pattern belongs to the corresponding cluster. The entropy
measure is used to estimate the distance between each
data point and each membership function. Entropy values
between data points and current membership functions were
calculated to determine whether to add a new hypercube cell.
The entropy measure can be calculated using the firing

strength from uð3Þij as follows:

EQ-TARGET;temp:intralink-;e008;326;151EMj ¼ −
XN
i¼1

Dij log2 Dij; (8)

where Dij ¼ expðuð2Þ−1ij Þ and EMj ∈ ½0;1�. Based on Eq. (9),
the criterion for the degree measure is used to estimate
and generate a new hypercube cell of new incoming data

Fig. 4 Flowchart of the proposed structure and parameter learning.
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x
⇀ ¼ ðx1; x2; : : : ; xND

Þ. The maximum entropy measure is
calculated as follows:

EQ-TARGET;temp:intralink-;e009;63;723EMmax ¼ max
1≤j≤NL

EMj; (9)

where NL is the number of the hypercube cell and
EM ∈ ½0;1� is a prespecified threshold. In order to limit
the number of hypercube cells in the proposed RFCMAC
model, the threshold value will decay during the learning
process. A low threshold leads to the learning of coarse clus-
ters (i.e., a low number of hypercube cells are generated),
whereas a high threshold leads to the learning of fine clusters
(i.e., a high number of hypercube cells are generated).
Therefore, the selection of the threshold value EM critically
affects the simulation results. That is, EM determines
whether the proper new hypercube cell is generated.
Therefore, if EMmax ≤ EM, then a new hypercube cell is
generated. Otherwise, the hypercube cell is not added.

Parameter learning algorithm. Five parameters of the
model are entered in the learning algorithm and optimized
based on the training data. The parameter learning occurs
concurrently with the structure learning. For each piece of
incoming data, five parameters (i.e., mij, σij, a0, aij, and
λqkj) are tuned in the RFCMAC model when the hypercube
cells are newly generated or originally existed. Here, the gra-
dient descent method is used to adjust the parameters of
the receptive field functions and the TSK-type function.
To clarify, consider the single-output case. The goal of the
minimizing cost function E is described as

EQ-TARGET;temp:intralink-;e010;63;402EðtÞ ¼ 1

2
½ydðtÞ − yðtÞ�2; (10)

where ydðtÞ denotes the desired output and yðtÞ is the model
output for each discrete time t. In each training cycle, from
the starting input variables to the activity of the model out-
put, yðtÞ are calculated by a feed-forward pass operation.
According to Eq. (10), the error is used to regulate the
weighted vector of the proposed RFCMAC model in a

given number of training cycles. The well-known learning
method of the backpropagation algorithm can be simplified
as follows:

EQ-TARGET;temp:intralink-;e011;326;719Wðtþ 1Þ ¼ WðtÞ þWðtÞ ¼ ΔWðtÞ þ
�
−η

∂EðtÞ
∂WðtÞ

�
; (11)

where η andW represent the learning rate and the free param-
eters, respectively. η denotes the pace factor for the learning
rate in the search space. A low value may lead to a local
optimal solution, whereas a high value leads to premature
convergence that cannot obtain a better optimal solution.
Therefore, the initial settings for ᾱ and η are based on expe-
rience estimation. According to Eq. (10), with respect to
an arbitrary weight vector, W is calculated by

EQ-TARGET;temp:intralink-;e012;326;587

∂EðtÞ
∂W

¼ eðtÞ ∂yðtÞ
∂W

: (12)

The corresponding antecedent and consequent parameters
of the RFCMAC model are then adjusted using the chain
rule to perform the error term recursive operation. With the
RFCMACmodel and the cost function as defined in Eq. (10),
the update rule for aij can be derived as

EQ-TARGET;temp:intralink-;e013;326;489aijðtþ 1Þ ¼ aijðtÞ þ ΔaijðtÞ; (13)

where
EQ-TARGET;temp:intralink-;e014;326;446

aijðtÞ ¼ −η ·
∂E
∂aij

¼ −η ·
∂E
∂y

·
∂y

∂Oð5Þ
j

·
∂Oð5Þ

j

∂aij
: (14)

The equations used to update the recurrent weight param-
eter λqkj cell are

EQ-TARGET;temp:intralink-;e015;326;348λqkjðtþ 1Þ ¼ λqkjðtÞ þ ΔλqkjðtÞ; (15)

where

EQ-TARGET;temp:intralink-;e016;63;282

ΔλqkjðtÞ ¼ −η ·
∂E
∂λqkj

¼ −η ·
∂E
∂y

·
∂y

∂Oð5Þ
j

·
∂Oð5Þ

j

∂Oð4Þ
j

·
∂Oð4Þ

j

∂λqkj

¼ −η · e ·

�
a0j þ

PND
i¼1 aijxi

�PNL
j¼1 O

ð4Þ
j −

PNL
j¼1 O

ð4Þ
j

�
a0j þ

PND
i¼1 aijxi

�
�PNL

j Oð4Þ
j

�
2

½Oð4Þ
j ðt − 1Þ − αj�; (16)

where η represents the learning rate of the recurrent λ for the
fuzzy weight functions and is set between 0 and 1, and
e denotes the error between the desired output and actual
output, i.e., yd–y.

mij and σij represent the mean and variance of the recep-
tive field functions, respectively. The adjustable parameters
of the receptive field functions are calculated by

EQ-TARGET;temp:intralink-;e017;326;139mijðtþ 1Þ ¼ mijðtÞ þmijðtÞ; (17)

and

EQ-TARGET;temp:intralink-;e018;326;105σijðtþ 1Þ ¼ σijðtÞ þ σijðtÞ; (18)

where
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EQ-TARGET;temp:intralink-;e019;63;154

Δmij ¼ −η ·
∂E
∂y

·
∂y

∂Oð5Þ
j

·
∂Oð5Þ

j

∂Oð4Þ
j

·
∂Oð4Þ

j

∂Oð3Þ
j

·
∂Oð3Þ

j

∂Oð2Þ
j

·
∂Oð2Þ

j

∂mij

¼ −η · e ·

�
a0j þ

PND
i¼1 aijxi

�PNL
j¼1 O

ð4Þ
j −

PNL
j¼1 O

ð4Þ
j

�
a0j þ

PND
i¼1 aijxi

�
�PNL

j Oð4Þ
j

�
2

· ð1 − γqj Þ · αj ·
2ðuð1Þi −mijÞ

σ2ij
; (19)

and

Fig. 5 (a) Original haze image; (b)–(j) the results using different α and β values, where (b) α ¼ 0.1,
β ¼ 0.1; (c) α ¼ 0.1, β ¼ 0.5; (d) α ¼ 0.1, β ¼ 0.9; (e) α ¼ 0.5, β ¼ 0.1; (f) α ¼ 0.5, β ¼ 0.5;
(g) α ¼ 0.5, β ¼ 0.9; (h) α ¼ 0.9, β ¼ 0.1; (i) α ¼ 0.9, β ¼ 0.5; and (j) α ¼ 0.9, β ¼ 0.9.
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where i denotes the i’th input dimension for i ¼ 1;2; : : : ; n,
and j denotes the j’th hypercube cell.

3.2 Weighted Strategy for Adaptively Refining the
Transmission Map

In the real world, the transmission is not always constant
within a window, especially around the contour of an object.
In the inconstant regions, the image of the recovery scene
generates some halos and block artifacts. The proposed sol-
ution is to use a pixel-window ratio (PWR) method to detect
the possible regions of the halo artifact in the recovered scene
and to use an adaptive weighting technique to mitigate the
artifact. The PWR is defined as the ratio of the pixel itself
and the 7 × 7 mask of the window. The PWR is derived by

EQ-TARGET;temp:intralink-;e021;63;496PWR ¼ PTM

WTM
; (21)

where the numerator is the minimum channel by 1 × 1mask
for RGB color space and the denominator is the window
transmission map (WTM) by 7 × 7 mask. A PWR value
very close to 1 means that the transmission within the
WTM is nearly constant. Although the halo situation cannot
occur, the relative color saturation in the image is very high.
In contrast, if the value of PWR is far >1, this means that
the transmission within the window is inconstant and the
halo artifact will occur. However, excessive color saturation
is not a problem. Although the halo artifact region can be
found by the value of PWR, the main problem is how to
mitigate artifacts from these regions. The proposed solution
to this problem is to use a weighted strategy approach to
improve refinement of the transmission map and to mitigate
the halo artifact. The weighted strategy approach is defined
as follows:

EQ-TARGET;temp:intralink-;e022;63;454t ¼

8>>><
>>>:

ω ×
h�

1 − α
PWR

�
× PTMþ α

PWR
×WTM

i
; if PWR > Tupper

ω ×
h�

1 − β
PWR

�
× PTMþ β

PWR
×WTM

i
; if T lower < PWR ≤ Tupper

ω ×WTM; otherwise

(22)

where α and β are the weighting factors for mitigating the
artifacts. The range of α and β is set as 0 < α < β < 1. In
Eq. (22), if the PWR value is greater than Tupper, it means
that the transmission is greatly different from the WTM,
the weighting estimation of the WTM is decreased, and the
weighting estimation of the PTM is increased. Therefore, this
situation requires a very small weighting factor α to adjust
the transmission rapidly so that the halo artifact can be elim-
inated. If the PWR value is between Tupper and T lower, this
means that the transmission is a little different from the
WTM. For this situation, the weighting factor β is greater
than the weighting factor α and it is applied to adjust
the transmission smoothly. Otherwise, the WTM value is
directly used as an estimation value. Parameter values α
and β are based on computational analysis of the intensity
values associated with the halos. Figure 5(a) shows the origi-
nal hazy image and Figs. 5(b)–5(j) show the results using
the different values of α and β. Based on the above computa-
tional analysis, weighting factors α and β are set appropri-
ately to improve the quality of the image dehazing.

3.3 Atmospheric Light Estimation

The atmospheric light factor must be carefully selected for
effective image dehazing. An incorrectly selected atmos-
pheric light factor will obtain very poor dehazing results.
In some situations, many objects are considered atmospheric
light, which results in erroneous image restoration. To solve

this problem, the proposed solution is to use an average value
of the brightest 1% in the transmission t to refine the atmos-
pheric light level. The average value is calculated as follows:

EQ-TARGET;temp:intralink-;e023;326;339Ac ¼
P

pixel∈x pixel
c

jxj ; (23)

Fig. 6 Estimation using an average value: (a) original image; (b) esti-
mate of transmission map; (c) image of atmospheric light; and
(d) scene radiance recovery.
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where A is the atmospheric light and c is the color channel.
Figure 6 shows the results of scene radiance recovery.

3.4 Image Recovery

This section describes how both atmospheric light and trans-
mission features in Secs. 3.2 and 3.3 are used as input factors
in scene recovery. The scene radiance recovery step converts
Eq. (1) into Eq. (24) to obtain the dehazed images. Therefore,
scene J can be recovered as follows:

EQ-TARGET;temp:intralink-;e024;326;752JðxÞ ¼ IðxÞ − A
max½t0; tðxÞ�

þ A; (24)

where t0 is the lower bound of transmission and is set as
0.15. If a little haze exists in the recovered image, then this
image will look more natural.

4 Results and Discussion
The experiments were performed in the C language on
a Pentium(R) i7-3770 CPU @3.20 GHz. The effectiveness
and robustness of the proposed method were verified by
testing several hazy images, namely, “New York,” “ny12,”
“ny17,” “y01,” and “y16”. The proposed approach was
also compared with other well-known haze removal
methods.13,16,17–20,24 Performance testing was divided into
three parts: (1) results of removing the halo, (2) assessment
of the visual images, and (3) analysis of the quantitative
measurement.

4.1 Results of Removing the Halo

Figure 7 shows the results of removing the halo for different
images. In Fig. 7(a), the estimated transmission map is from
an input hazy image using the patch size 7 × 7. Although the
dehazing results are good, some block effects (halo artifacts)
exist in the blue blocks of Fig. 7(a). The phenomenon is
because the transmission is not always a constant value in
a patch. In Fig. 7(b), the halo artifacts are suppressed by
the proposed method in the red blocks. Therefore, the halo
artifacts do not exist using the proposed method.

4.2 Estimation of the Visual Image

Figure 8 shows the comparison results. This figure shows
that the dehazing results obtained by the proposed method
are better than those of Fattal,16 Tarel and Hautière,19

and Ancuti and Ancuti.24 Additionally, Schechner and
Averbuch14 adopted a multi-image polarization-based dehaz-
ing method that employs the worst and the best polarization
states among the existing image versions. For a comparison
with the method developed in Schechner and Averbuch,14 we
processed only one input used in that study.r14 The dehazing
results obtained by the proposed method are superior to those
of Schechner and Averbuch.14

Fig. 7 Removal of halo artifacts for different images. (a) Halo artifacts
and (b) removal of the halo artifacts.

Fig. 8 Comparison of dehazing results using various methods.
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Figures 9 and 10 also show the comparison results for
the proposed approach and other state-of-the-art methods.
Figure 9 shows that, compared with the techniques devel-
oped by Tan17 and by Tarel and Hautière,19 the proposed
method preserves the fine transitions in the hazy regions
and does not generate unpleasing artifacts. Moreover, the
techniques of Tan17 and Tarel and Hautière19 produce over-
saturated colors. Although the technique developed by Fattal16

obtains good dehazing results, its applications are limited in
dense haze situations. The poor performance mainly results
from the use of a statistical analysis method that needs to

estimate the variance of the depth map. The technique of
Kopf et al.13 obtains a good result in the color contrast, but
only a little detailed texture is presented in the image. The
technique of He et al.18 gets an obvious color difference in
some regions. Recently, the technique developed by Nishino
et al.20 yields aesthetically pleasing results, but some artifacts
are introduced in those regions, which are considered at
infinite depth. The method developed by Ancuti and Ancuti24

obtains a natural image, but color differences are visible in
some regions, such as objects. The proposed method can
effectively perform hazing, halation, and color cast.

Fig. 9 Comparison of dehazing techniques for city scene images: (a) ny12 and (b) ny17.
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An image of a mountain was also used for comparison
with other state-of-the-art methods. Figure 10 shows the
dehazing results using various methods. Comparisons
showed that the Tan method17 produces oversaturation phe-
nomena and causes color differences and halo artifacts.

A good color contrast is obtained by the Fattal16 method, but
some differences in detailed textures and color differences
are visible. The results of Kopf13 are similar to those of
Fattal.16 Though Tarel and Hautière’s19 method has a good
detailed texture, the color difference problem is generated.

Fig. 10 Comparison of dehazing techniques for mountain scene images: (a) y01 and (b) y16.
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Because of color differences caused by oversaturation, the
results obtained by the He et al.18 method are unnatural.
The technique developed by Nishino et al.20 obtains a good
overall image, but an unnatural phenomenon is visible in
clouds in the sky. The technique of Ancuti and Ancuti24 per-
forms well in terms of true color contrast; however, a slight
unnatural phenomenon still occurs around the sky. Overall,
the results obtained by the proposed method are superior to
those of other methods.

4.3 Quantitative Measurement Results

A real-world quantitative analysis of image restoration is not
easy to implement because a standard reference image has
not been validated. Therefore, to demonstrate the effective-
ness of the proposed algorithm compared to other image
dehazing methods such as Tan,17 Fattal,16 Kopf et al.,13

Tarel and Hautière,19 He et al.,18 Nishino et al.,20 and
Ancuti and Ancuti,24 this study employs two well-known
quantitative metrics for analysis: the indicator assessment
of S-CIELAB by Zhang and Wandell56 and the blind mea-
sure by Hautière et al.57

The S-CIELAB56 metric is used to estimate color fidelity
in visual images because it incorporates the spatial color sen-
sitivity of the eye and evaluates the color contrast between
the restored image and the original image. Therefore, it
obtains accurate predictions. The value of the color contrast
is proportional to the S-CIELAB metric. If the S-CIELAB
metric is small, the color contrast value is small; in contrast,
if the S-CIELAB metric is large, the color contrast value is
large. Table 1 shows the estimation results of color contrast
using various methods.

The blind measure methodology57 calculates the ratio
between the gradient of before and after image restoration.
This calculation is based on the concept of visibility, which is
commonly used in lighting engineering. This study considers
four images for discussing, named as ny12, ny17, y01, and
y16. Indicator e represents edges newly visible after resto-
ration, and indicator r̄ represents the mean ratio of the gra-
dients at visible edges. The blind measure is calculated as
follows:

EQ-TARGET;temp:intralink-;e025;326;543e ¼ nr − no
no

; (25)

where nr and no are the number of visible edges in the
restored image and the original image, respectively

EQ-TARGET;temp:intralink-;e026;326;480r̄ ¼ exp

�
1

nr

X
Pi∈℘r

log ri

�
; (26)

where℘r is the set of visible edges in the restored image, Pi
is the i’th element of the corresponding set ℘r, and ri
denotes the i’th ratio between the gradient of the original
image and the restored image.

Table 2 shows the performance of different algorithms
with e and r̄. In Table 2, the edge newly visible after resto-
ration (i.e., the e value) of the proposed method is larger than
those of other methods,13,16–18,20 whereas the r̄ value of the
proposed method is smaller than that in the Tan17 and Tarel
and Hautière19 methods. However, comparisons of the visual
images show that both methods (i.e., Refs. 17 and 19) exhibit
oversaturation and color contrast.

Table 1 Estimation results of color contrast using various methods.

Name

ny12 ny17 y01 y16

ΔE ΔE ΔE ΔE

Tan 39,394 43,478 15,651 10,244

Fattal 20,993 15,997 2683 5591

Kopf et al. 10,096 3853 5891 4012

Tarel et al. 1315 1299 499 3066

He et al. 1462 1357 511 6496

Nishino et al. 1346 1342 1456 4780

Ancuti and Ancuti 1331 1548 2360 3301

Proposed 1289 1268 308 2296

Table 2 Performance of different algorithms with e and r̄ .

Name

ny12 ny17 y01 y16

e r̄ e r̄ e r̄ e r̄

Tan −0.14 2.34 −0.06 2.22 0.08 2.28 −0.08 2.08

Fattal −0.06 1.32 −0.12 1.56 0.04 1.23 −0.03 1.27

Kopf et al. 0.05 1.42 0.01 1.62 0.09 1.62 −0.01 1.34

Tarel et al. 0.07 1.88 −0.01 1.87 0.02 2.09 −0.01 2.01

He et al. 0.06 1.42 0.01 1.65 0.08 1.33 0.06 1.42

Nishino et al. −0.01 1.81 −0.07 1.79 0.11 1.79 0.01 1.29

Ancuti and Ancuti 0.02 1.49 0.12 1.54 0.07 1.19 0.18 1.46

Proposed 0.11 1.72 0.06 1.74 0.22 1.69 0.19 1.82
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The computation time of the proposed method was also
compared with that of other state-of-the-art techniques.
For this comparison, test images with an average size of
600 × 800 were used. The comparisons showed that the
proposed method requires 4.5 s, the method of Tan17

needs > 45 s, Fattal16 requires 35 s, the technique of Tarel
and Hautière19 needs 8 s, and He et al.18 requires 20 s.
Therefore, the proposed method has the shortest computation
time.

Based on the above-mentioned analysis and comparison
in Secs. 4.1–4.3, an efficient hybrid of the RFCMAC model
and the weighted strategy is proposed for solving halo
removal, color contrast enhancement, and computation
time reduction.

5 Conclusions
The hybrid RFCMAC model and weighted strategy devel-
oped in this study effectively solve hazy and foggy images.
The proposed RFCMAC model performs estimation of the
transmission map and accurately selects the average of the
brightest 1% of atmospheric light. An adaptively weighted
strategy is applied to generate a refined transmission map
for removing the halo effect. Experimental results demon-
strate the superiority of the proposed method in enhancing
color contrast, balancing color saturation, removing halo
artifacts, and reducing computation time.
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