You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 May 2017Bit error rate analysis of the Κ channel using wavelength diversity
The presence of atmospheric turbulence in the free space causes fading and degrades the performance of a free space optical (FSO) system. To mitigate the turbulence-induced fading, multiple copies of the signal can be transmitted on a different wavelength. Each signal, in this case, will undergo different fadings. This is known as the wavelength diversity technique. Bit error rate (BER) performance of the FSO systems with wavelength diversity under strong turbulence condition is investigated. K-distribution is chosen to model a strong turbulence scenario. The source information is transmitted onto three carrier wavelengths of 1.55, 1.31, and 0.85μm. The signals at the receiver side are combined using three different methods: optical combining (OC), equal gain combining (EGC), and selection combining (SC). Mathematical expressions are derived for the calculation of the BER for all three schemes (OC, EGC, and SC). Results are presented for the link distance of 2 and 3 km under strong turbulence conditions for all the combining methods. The performance of all three schemes is also compared. It is observed that OC provides better performance than the other two techniques. Proposed method results are also compared with the published article.