19 August 2017 Low-dimension local descriptor for dense stereo matching and scene reconstruction
Author Affiliations +
Abstract
The DAISY descriptor has been widely used in dense stereo matching and scene reconstruction. However, DAISY is vulnerable to similar feature regions because the construction method of DAISY sequentially arranges the description of center and neighbor sample points and does not consider their relationships. To enhance the discriminative power of the local descriptor and accelerate the speed of dense matching and scene reconstruction, we propose a low-dimensional local descriptor. The proposed descriptor is inspired from the local binary pattern (LBP). In image space, LBP describes local detail texture by computing the difference between center and neighbor sample points. We introduce this advantage in scale space to extend the DAISY descriptor and make it more efficient for dense matching similar features in the different regions. On this basis, a two-dimensional discrete cosine transform (2D-DCT) is utilized to reduce the dimensions of the descriptor as well as reduce the computation cost of dense matching and scene reconstruction. Through a variety of experiments on the benchmark laser-scanned ground truth scenes as well as indoor and outdoor scenes, we show the proposed descriptor can get more accurate depth maps and more complete reconstruction results than that of using other common descriptors, and the computational speed is much faster than that of using DAISY.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Chao Zhang, Chao Zhang, Bindang Xue, Bindang Xue, Fugen Zhou, Fugen Zhou, } "Low-dimension local descriptor for dense stereo matching and scene reconstruction," Optical Engineering 56(8), 083105 (19 August 2017). https://doi.org/10.1117/1.OE.56.8.083105 . Submission: Received: 26 April 2017; Accepted: 25 July 2017
Received: 26 April 2017; Accepted: 25 July 2017; Published: 19 August 2017
JOURNAL ARTICLE
13 PAGES


SHARE
RELATED CONTENT


Back to Top