6 March 2018 Additive manufacturing of transparent fused quartz
Author Affiliations +
This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing material onto the workpiece. Spectroscopy and pyrometry are used to measure the thermal radiation incandescently emitted from the molten region. The effects of the laser power and scan speed are determined by measuring the morphology of single tracks. Thin walls are printed to study the effects of layer-to-layer height. This information is used to deposit solid pieces including a cylindrical-convex shape capable of focusing visible light. The transmittance and index homogeneity of the printed fused quartz are measured. These results show that the filament-fed process has the potential to print transmissive optics.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
Junjie Luo, Junjie Luo, John M. Hostetler, John M. Hostetler, Luke Gilbert, Luke Gilbert, Jonathan T. Goldstein, Jonathan T. Goldstein, Augustine M. Urbas, Augustine M. Urbas, Douglas A. Bristow, Douglas A. Bristow, Robert G. Landers, Robert G. Landers, Edward C. Kinzel, Edward C. Kinzel, } "Additive manufacturing of transparent fused quartz," Optical Engineering 57(4), 041408 (6 March 2018). https://doi.org/10.1117/1.OE.57.4.041408 . Submission: Received: 6 October 2017; Accepted: 9 February 2018
Received: 6 October 2017; Accepted: 9 February 2018; Published: 6 March 2018

Back to Top